Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096401    DOI: 10.1088/1674-1056/adcf8a
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering

Guoshuai Du(杜国帅)1,2,†, Yubing Du(杜玉冰)1,2,†, Jiaxin Ming(明嘉欣)1,3, Zhixi Zhu(朱芷希)4, Jiaohui Yan(闫皎辉)4, Jiayin Li(李嘉荫)1,3, Tiansong Zhang(张天颂)1,2, Lina Yang(杨哩娜)2,§, Ke Jin(靳柯)1,4, and Yabin Chen(陈亚彬)1,2,5,‡
1 Advanced Research Institute of Multidisciplinary Sciences (ARIMS), Beijing Institute of Technology, Beijing 100081, China;
2 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
3 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
4 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
5 Beijing Institute of Technology Chongqing Institute of Microelectronics and Microsystems, Chongqing 400030, China
Abstract  The extensive applications of cubic silicon in flexible transistors and infrared detectors are greatly hindered by its intrinsic properties. Metastable silicon phases, such as Si-III, IV, and XII, prepared using extreme pressure methods, provide a unique "genetic bank" with diverse structures and exotic characteristics. However, exploration of their inherent physical properties remains underdeveloped. Herein, we demonstrate the phase engineering strategy to modulate the thermal conductivity and mechanical properties of metastable silicon. The thermal conductivity, obtained via the Raman optothermal approach, exhibits broad tunability across various Si-I, III, XII, and IV phases. The hardness and Young's modulus of Si-IV are significantly greater than those of the Si-III/XII mixture, as confirmed by the nanoindentation technique. Moreover, it was found that pressure-induced structural defects can substantially degrade the thermal and mechanical properties of silicon. This systematic investigation offers a feasible route for designing novel semiconductors and further advancing their desirable applications in advanced nanodevices and mechanical transducers.
Keywords:  metastable silicon      thermal conductivity      mechanical property      high pressure  
Received:  13 March 2025      Revised:  08 April 2025      Accepted manuscript online:  23 April 2025
PACS:  64.60.My (Metastable phases)  
  74.25.fc (Electric and thermal conductivity)  
  62.20.-x (Mechanical properties of solids)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 52472040, 52072032, and 12090031) and the 173 JCJQ program (Grant No. 2021- JCJQ-JJ-0159).
Corresponding Authors:  Yabin Chen, Lina Yang     E-mail:  chyb0422@bit.edu.cn;yangln@bit.edu.cn

Cite this article: 

Guoshuai Du(杜国帅), Yubing Du(杜玉冰), Jiaxin Ming(明嘉欣), Zhixi Zhu(朱芷希), Jiaohui Yan(闫皎辉), Jiayin Li(李嘉荫), Tiansong Zhang(张天颂), Lina Yang(杨哩娜), Ke Jin(靳柯), and Yabin Chen(陈亚彬) Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering 2025 Chin. Phys. B 34 096401

[1] Ballif C, Haug F J, Boccard M, Verlinden P J and Hahn G 2022 Nat. Rev. Mater. 7 597
[2] Shekhar S, BogaertsW, Chrostowski L, Bowers J E, Hochberg M, Soref R and Shastri B J 2024 Nat. Commun. 15 751
[3] Barth S, Seifner M S and Maldonado S 2020 Chem. Mater. 32 2703
[4] Franco Gonzalez A, Yang N H and Liu R S 2017 J. Phys. Chem. C 121 27775
[5] Fadaly E M T, Dijkstra A, Suckert J R, et al. 2020 Nature 580 205
[6] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005
[7] Mujica A, Rubio A, Munoz A and Needs R 2003 Rev. Mod. Phys. 75 863
[8] Ge G, Rovaris F, Lanzoni D, Barbisan L, Tang X, Miglio L, Marzegalli A, Scalise E and Montalenti F 2024 Acta. Mater. 263 119465
[9] Anzellini S, Wharmby M T, Miozzi F, Kleppe A, Daisenberger D and Wilhelm H 2019 Sci. Rep. 9 15537
[10] Wippermann S, He Y, Vörös M and Galli G 2016 Appl. Phys. Rev. 3 040807
[11] Kailer A, Gogotsi Y G and Nickel K G 1997 J. Appl. Phys. 81 3057
[12] Piltz R, Maclean J, Clark S, Ackland G, Hatton P and Crain J 1995 Phys. Rev. B 52 4072
[13] Shiell T B, Zhu L, Cook B A, Bradby J E, Mcculloch D G and Strobel T A 2021 Phys. Rev. Lett. 126 215701
[14] Wong S, Johnson B C, Haberl B, Mujica A, Mccallum J C, Williams J S and Bradby J E 2019 J. Appl. Phys. 126 105901
[15] Zhang H, Liu H, Wei K, Kurakevych O O, Le Godec Y, Liu Z, Martin J, Guerrette M, Nolas G S and Strobel T A 2017 Phys. Rev. Lett. 118 146601
[16] Ci P, Sun M, Upadhyaya M, Song H, Jin L, Sun B, Jones M R, Ager J W, Aksamija Z and Wu J 2022 Phys. Rev. Lett. 128 085901
[17] Zhou Y, Dong Z Y, HsiehWP, Goncharov A F and Chen X J 2022 Nat. Rev. Phys. 4 319
[18] Rao Y, Zhao C Y and Ju S 2022 Appl. Phys. Lett. 120 163901
[19] Harish S, Tabara M, Ikoma Y, Horita Z, Takata Y, Cahill D G and Kohno M 2014 Nanoscale Res. Lett. 9 326
[20] Raya-Moreno M, Aramberri H, Seijas-Bellido J A, Cartoix‘a X and Rurali R 2017 Appl. Phys. Lett. 111 032107
[21] Liang T, Xiong L, Lou H, Lan F, Zhang J, Liu Y, Li D, Zeng Q and Zeng Z 2022 Scripta Mater. 220 114936
[22] Kim H S and Bush M B 1999 Nanostruct. Mater. 11 361
[23] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223
[24] Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544
[25] Du Y, Du G, Dong H, Li J, Han W, Chen B and Chen Y 2024 J. Phys. Chem. C 128 4818
[26] Balandin A A, Ghosh S, BaoW, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[27] Gan Y L, Wang L, Su X Q, Xu S W, Shen X and Wang R P 2014 J. Raman Spectrosc. 45 377
[28] Johnson B C, Haberl B, Bradby J E, Mccallum J C and Williams J S 2011 Phys. Rev. B 83 235205
[29] Zhou J, Liao B and Chen G 2016 Semicond. Sci. Technol. 31 043001
[30] Abeles B 1963 Phys. Rev. 131 1906
[31] Dixit S and Shukla A K 2018 J. Appl. Phys. 123 224301
[32] Ikoma Y, Hayano K, Edalati K, Saito K, Guo Q and Horita Z 2012 Appl. Phys. Lett. 101 121908
[33] Abdel-Aal H A, Reyes Y, Patten J A and Dong L 2006 Mater. Charact. 57 281
[34] Cao F and He Z 2022 Int. J. Mod. Phys. B 36 2240050
[35] Glassbrenner C J and Slack G A 1964 Phys. Rev. 134 A1058
[36] Shanks H R, Maycock P D, Sidles P H and Danielson G C 1963 Phys. Rev. 130 1743
[37] Pfeifer T W, Tomko J A, Hoglund E, Scott E A, Hattar K, Huynh K, Liao M, Goorsky M and Hopkins P E 2022 J. Appl. Phys. 132 075112
[38] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E and Shi L 2014 Appl. Phys. Rev. 1 011305
[39] Hiroshi Wada H W and Takeshi Kamijoh T K 1996 Jpn. J. Appl. Phys. 35 L648
[40] Zink B L, Pietri R and Hellman F 2006 Phys. Rev. Lett. 96 055902
[41] Jeong C, Datta S and Lundstrom M 2012 J. Appl. Phys. 111 093708
[42] Li X and Bhushan B 2002 Mater. Charact. 48 11
[43] Pharr G M, Oliver W C and Clarke D R 1990 J. Electron. Mater. 19 881
[44] Ronald E M and Vijay B S 2000 Nanotechnol. 11 139
[45] Sadeghian H, Yang C K, Goosen J F L, Bossche A, Staufer U, French P J and Van Keulen F 2010 J. Micromech. Microeng. 20 064012
[1] Charge doping induced thermal switches with a high switching ratio in monolayer MoS2
Chen Gui(桂琛), Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Hao Chen(陈浩), Yuan Yao(姚远), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2025, 34(9): 097401.
[2] Pressure-induced amorphization and metallization in orthorhombic SiP
Qiru Zeng(曾琪茹), Youjun Zhang(张友君), Yukai Zhuang(庄毓凯), Linfei Yang(杨林飞), Qiming Wang(王齐明), and Yi Sun(孙熠). Chin. Phys. B, 2025, 34(9): 096102.
[3] Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study
Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2025, 34(9): 096302.
[4] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[5] Preparation of high-performance Cu2Se thermoelectric materials by the KCl flux method and research on thermoelectric transport performance
Yonggui Tao(陶永贵), Chisheng Deng(邓池升), Jicheng Li(李吉成), Wen Ge(葛文), Ying Zhang(张盈), Yujie Xiang(向玉婕), and Shukang Deng(邓书康). Chin. Phys. B, 2025, 34(9): 097306.
[6] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[7] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[8] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[9] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[10] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[11] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[12] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[13] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[14] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[15] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
No Suggested Reading articles found!