Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016105    DOI: 10.1088/1674-1056/ad08a6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations

Dan Sun(孙丹)1, Qingfeng Yang(杨青峰)1, Jiajun Zhao(赵家珺)2, Shixin Gao(高士鑫)1, Yong Xin(辛勇)1, Yi Zhou(周毅)1, Chunyu Yin(尹春雨)1, Ping Chen(陈平)1,†, Jijun Zhao(赵纪军)2, and Yuanyuan Wang(王园园)2,‡
1 Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China;
2 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Dalian 116024, China
Abstract  Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO2 and U3Si2 according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra- and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO2 and U3Si2 have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U3Si2 is evaluated.
Keywords:  grain size      point defects      fission gas bubble  
Received:  03 August 2023      Revised:  28 September 2023      Accepted manuscript online:  02 November 2023
PACS:  61.72.Mm (Grain and twin boundaries)  
  61.72.J- (Point defects and defect clusters)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2167217, 12205286, and 11905025) and the National MCF Energy Research and Development Program of China (Grant No. 2018YFE0308105).
Corresponding Authors:  Ping Chen, Yuanyuan Wang     E-mail:  Chenping_npic@163.com;yuanyuanwang@dlut.edu.cn

Cite this article: 

Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园) Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations 2024 Chin. Phys. B 33 016105

[1] Rebak R B 2020 Accident-tolerant materials for light water reactor fuels (Amsterdam:Elsevier) p. 45
[2] Gamble K A, Pastore G, Andersson D and Cooper M W 2019 ATF material model development and validation for priority fuel concepts (Idaho Falls:Idaho National Laboratory) p. 7
[3] Ortega L H, Blamer B J, Evans J A and McDeavitt S M 2016 J. Nucl. Mater. 471 116
[4] Harp J M, Lessing P A and Hoggan R E 2015 J. Nucl. Mater. 466 728
[5] Noirot J, Pontillon Y, Yagnik S and Turnbull J A 2015 J. Nucl. Mater. 46 277
[6] Massih A 2014 Effects of additives on uranium dioxide fuel behavior (Uppsala:Swedish Radiation Safety Authority) p. 1
[7] Delafoy C and Dewes P 2006 Top Fuel 2006 International Meeting on LWR Fuel Performance "Nuclear Fuel:Addressing the future", October 22-26, 2006, Salamance, Spain, pp. 142-146
[8] Cooper M W, Pastore G, Che Y, Matthews C, Forslund A, Stanek C R, Shirvan K, Tverberg T, Gamble K A, Mays B and Andersson D A 2021 J. Nucl. Mater. 545 152590
[9] Gan J, Keiser D D Jr, Miller B D, Jue J F, Robinson A B, Madden J W, Medvedev P G and Wachs D M 2011 J. Nucl. Mater. 419 97
[10] Barani T, Pastore G, Pizzocri D, Andersson D A, Matthews C, Alfonsi A, Gamble K A, Van Uffelen P, Luzzi L and Hales J D 2019 J. Nucl. Mater. 522 97
[11] Shimizu H 1965 The Properties and Irradiation Behavior of U3Si2 (Canoga Park:Atomics International) NAA-SR-10621
[12] Miao Y, Gamble K A, Andersson D, Mei Z G and Yacout A M 2018 Nucl. Eng. Des. 326 371
[13] Rest J 2003 J. Nucl. Mater. 325 107
[14] Andersson D A, Liu X Y, Beeler B, Middleburgh S C, Claisse A and Stanek C R 2019 J. Nucl. Mater. 515 312
[15] Yun Y, Kim H, Kim H and Park K 2008 J. Nucl. Mater. 378 40
[16] Kaloni T P and Torres E 2020 J. Nucl. Mater. 533 152090
[17] Millett P C, Tonks M R, Biner S B, Zhang L, Chockalingam K and Zhang Y 2012 J. Nucl. Mater. 425 130
[18] Aagesen L K, Schwen D, Tonks M R and Zhang Y 2019 Comput. Mater. Sci. 161 35
[19] Wang Y F, Z H Xiao and Shi S Q 1974 J. Eng. Phys. Thermophys. 21 1156
[41] Bauer T H 1993 Int. J. Heat Mass Transfer 36 4181
[42] Millett P C and Tonks M 2011 J. Nucl. Mater. 412 281
[43] Hu S, Casella A M, Lavender C A, Senor D J and Burkes D E 2015 J. Nucl. Mater. 462 64
[44] Millett P C, Tonks M R, Chockalingam K, Zhang Y and Biner S B 2013 J. Nucl. Mater. 439 117
[1] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[2] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[3] Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature
Rui Huang(黄瑞), Tian Lan(兰天), Chong Li(李冲), Jing Li(李景), and Zhiyong Wang(王智勇). Chin. Phys. B, 2021, 30(7): 076802.
[4] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[5] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[6] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[7] Effect of grain size and arrangement on dynamic damage evolution of ductile metal
Qi Mei-Lan (祁美兰), Zhong Sheng (钟声), He Hong-Liang (贺红亮), Fan Duan (范端), Zhao Li (赵黎). Chin. Phys. B, 2013, 22(4): 046203.
[8] Formation energies and electronic structures of native point defects in potassium dihydrogen phosphate
Wang Kun-Peng(王坤鹏) and Huang Ye(黄烨) . Chin. Phys. B, 2011, 20(7): 077401.
[9] Thickness dependence of grain size and surface roughness for dc magnetron sputtered Au films
Zhang Xin(张鑫), Song Xiao-Hui(宋小会), and Zhang Dian-Lin(张殿琳). Chin. Phys. B, 2010, 19(8): 086802.
[10] Grain size reduction of copper subjected to repetitive uniaxial compression combined with accumulative fold
Zou Yong-Tao(邹永涛), Lei Li(雷力), Wang Zhao(王赵), Wang Jiang-Hua(王江华), Zhang Wei(张伟), and He Duan-Wei(贺端威). Chin. Phys. B, 2009, 18(2): 815-820.
[11] Research on factors influencing on the microwave permeability of nanocrystalline FeB alloys
Fu Cheng-Wu(傅成武) and Zhang Shuan-Qin(张拴勤). Chin. Phys. B, 2007, 16(6): 1728-1730.
[12] Dependence of coercivity on phase distribution and grain size in nanocomposite Nd2Fe14B/$\alpha$-Fe magnets
Feng Wei-Cun (冯维存), Gao Ru-Wei (高汝伟), Li Wei (李卫), Han Guang-Bing (韩广兵), Sun Yan (孙艳). Chin. Phys. B, 2005, 14(8): 1649-1652.
No Suggested Reading articles found!