CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation |
Benjun Wang(汪本军)1, Wenjun Liu(刘文君)1, Li Liu(刘莉)1, Yu Wang(王玉)1, Yu Hang(杭宇)1, Xinyu Wang(王新宇)1, Mengen Shi(施蒙恩)1, Hanchen Feng(冯汉臣)3, Long Hou(侯龙)1,2,†, Chenchen Yuan(袁晨晨)3, Zhong Li(李忠)4, and Weihuo Li(李维火)1,2 |
1 School of Materials Science and Engineering, School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China; 2 Wuhu Technology and Innovation Research Institute, Wuhu 242000, China; 3 School of Materials Science and Engineering, Instrumental Analysis Center, Southeast University, Nanjing 211189, China; 4 Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China |
|
|
Abstract Compared to the commercial soft-magnetic alloys, the high saturation magnetic flux density ($B_{\rm s}$) and low coercivity ($H_{\rm c}$) of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of electronic products, thus attracting great attention. In this work, we designed a new FeNiBCuSi formulation with a novel atomic ratio, and the microstructure evolution and magnetic softness were investigated. Microstructure analysis revealed that the amount of Si prompted the differential chemical fluctuations of Cu element, favoring the different nucleation and growth processes of $\alpha $-Fe nanocrystals. Furthermore, microstructural defects associated with chemical heterogeneities were unveiled using the Maxwell-Voigt model with two Kelvin units and one Maxwell unit based on creeping analysis by nanoindentation. The defect, with a long relaxation time in relaxation spectra, was more likely to induce the formation of crystal nuclei that ultimately evolved into the $\alpha$-Fe nanocrystals. As a result, Fe$_{84}$Ni$_{2}$B$_{12.5}$Cu$_{1}$Si$_{0.5}$ alloy with refined uniform nanocrystalline microstructure exhibited excellent magnetic softness, including a high $B_{\rm s}$ of 1.79 T and very low $H_{\rm c}$ of 2.8 A/m. Our finding offers new insight into the influence of activated defects associated with chemical heterogeneities on the microstructures of nanocrystalline alloy with excellent magnetic softness.
|
Received: 03 July 2024
Revised: 27 September 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
Fund: Project supported by the Anhui Provincial Natural Science Foundation (Grant No. 2208085QE121), the Key Research & Development Plan of Anhui Province (Grant No. 2022a05020016), the University Natural Science Research Project of Anhui Province (Grant No. 2023AH051084), and the National Natural Science Foundation of China (Grant No. 52071078). |
Corresponding Authors:
Long Hou
E-mail: longhou@ahut.edu.cn
|
Cite this article:
Benjun Wang(汪本军), Wenjun Liu(刘文君), Li Liu(刘莉), Yu Wang(王玉), Yu Hang(杭宇), Xinyu Wang(王新宇), Mengen Shi(施蒙恩), Hanchen Feng(冯汉臣), Long Hou(侯龙), Chenchen Yuan(袁晨晨), Zhong Li(李忠), and Weihuo Li(李维火) Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation 2024 Chin. Phys. B 33 126101
|
[1] Bottauscio O 2013 Selected Papers from the 21st Soft Magnetic Materials Conference (SMM 21), September 1-4, 2013, Budapest, Hungary [2] Jiang M F, Cai M J, Zhou J, Di S Y, Li X S, Luo Q and Shen B L 2023 Mater. Today Nano 22 100307 [3] Zhou J, Li X S, Hou X B, Ke H B, Fan X D, Luan J H, Peng H L, Zeng Q S, Lou H B, Wang J G, Liu C T, Shen B L, Sun B A, Wang W H and Bai H Y 2023 Adv. Mater. 35 e2304490 [4] Makino A, Kubota T, Yubuta K, Inoue A, Urata A, Matsumoto H and Yoshida S J 2011 Appl. Phys. 109 [5] Yao K F, Shi L X, Chen S Q, Shao Y, Chen N and Jia J L 2018 Acta. Phys. Sin. 67 016101 (in Chinese) [6] Stuckler M, Wurster S, Weissitsch L, Krenn H, Pippan R and Bachmaier A 2021 J. Mater. Res. Technol. 12 1235 [7] Stückler M, Wurster S, Pippan R and Bachmaier A 2021 AIP Adv. 11 015033 [8] Li X S, Zhou J, Shen L Q, Sun B A, Bai H Y and Wang W H 2022 Adv. Mater. 35 2205863 [9] Hou L, Wang B J, Liu L, Mao X H, Zhang M Y, Yuan C C, Li Z, Ju W W, Feng H C, Tang C Y, Xia A L and Li W H J 2024 Mater. Sci. Technol. 200 27 [10] Hou L, Li M R, Jiang C, Fan X D, Luo Q, Chen S S, Song P D and Li W H 2021 J. Alloys Compd. 853 157071 [11] Hou L, Fan X D, Wang Q Q, Yang W M and Shen B L 2019 J. Mater. Sci. Technol. 35 1655 [12] Wan Q Y, Tian B, Zhang P L, Wang J H and Hua Z 2023 Chin. Phys. B 32 088102 [13] Zhao C L, Wang A D, Yue S Q, Liu T, He A N, Chang C T, Wang X M and Liu C T 2018 J. Alloys Compd. 742 220 [14] Luo Q, Li D H, Cai M J, Di S Y, Zhang Z G, Zeng Q S, Wang Q Q and Shen B L 2022 J. Mater. Sci. Technol. 116 72 [15] Shi L X, Qin X L and Yao K F 2020 Prog. Nat. Sci. 30 208 [16] Hou L, Yang W M, Luo Q, Fan X D, Liu H S and Shen B L 2020 J. Non-Cryst. Solids 530 119800 [17] Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hou L and Li W H 2023 Acta. Phys. Sin. 72 026101 (in Chinese) [18] Shen B L, Inoue A and Chang C T 2004 Appl. Phys. Lett. 85 4911 [19] Wang C X, Wu Z Y, Feng X M, Li Z, Gu Y, Zhang Y, Tan X H and Xu H 2020 Intermetallics 118 106689 [20] Yoshizawa Y, Oguma S and Yamauchi K 1988 J. Appl. Phys. 64 6044 [21] Chen Y M, Ohkubo T, Ohta M, Yoshizawa Y and Hono K 2009 Acta Mater. 57 4463 [22] Parsons R, Garitaonandia J S, Yanai T, Onodera K, Kishimoto H, Kato A and Suzuki K 2017 J. Alloys Compd. 695 3156 [23] Wang Y C, Zhang Y, Makino A and Kawazoe Y 2018 J. Alloys Compd. 730 196 [24] Suzuki K, Parsons R, Zang B, Onodera K, Kishimoto H and Kato A 2017 Appl. Phys. Lett. 110 012407 [25] Zheng Z G, Chen Y B, Wei J, Wang X, Qiu Z G and Zeng D C 2023 J. Alloys Compd. 939 168621 [26] Parsons R, Zang B, Onodera K, Kishimoto H, Shoji T, Kato A and Suzuki K 2018 J. Magn. Magn. Mater. 476 142 [27] Zhai X B, Wang Y G, Zhu L, Zheng H, Dai Y D, Chen J K and Pan F M 2019 J. Magn. Magn. Mater. 480 47 [28] Fan X D, Zhang T, Yang W M, Luan J H, Jiao Z B and Li H 2023 J. Mater. Sci. Technol. 147 124 [29] Hou L, Jiang C, Liu H, Luo Q, Fan X D, Li W H and Li M R 2021 J. Alloys Compd. 859 157863 [30] Fan X D, Zhang T, Jiang M F, Yang W M and Shen B L 2019 J. NonCryst. Solids 503-504 36 [31] Jia X J, Zhang W, Dong Y Q, Li J W, He A N, Luan J H and Li R W 2022 J. Alloys Compd. 920 166030 [32] Herzer G 1989 IEEE Trans. Magn. 25 3327 [33] Ohta M and Yoshizawa Y 2007 Appl. Phys. Lett. 91 062517 [34] Meng Y, Pang S J, Chang C T, Bai X Y and Zhang T 2021 J. Magn. Magn. Mater. 523 167583 [35] Han Y, Inoue A, Kong F L, Chang C T and Al-Marzouki F 2016 J. Alloys Compd. 657 237 [36] Herzer G 2013 Acta Mater. 61 718 [37] Zhang H, Wang Z, Wen Z P and Wang J 2014 IEEE Trans. Magn. 50 7 [38] Kulik T, Matyja H and Lisowski B 1984 J. Magn. Magn. Mater. 43 135 [39] Suzuki K, Ito N, Garitaonandia J S, Cashion J D and Herzer G 2008 J. Non. Cryst. Solids 354 5089 [40] Hono K, Ping D H, Ohnuma M and Onodera H 1999 Acta Mater. 47 997 [41] Castellero A, Moser B, Uhlenhaut D I, Torre F H D and Löffler J F 2008 Acta Mater. 56 3777 [42] Lv Z.W, Yuan C C, Ke H B and Shen B L 2021 J. Mater. Sci. Technol. 69 42 [43] Ke H B, Zhang P, Sun B A, Zhang P G, Liu T W, Chen P H, Wu M and Huang H G 2019 J. Alloys Compd. 788 391 [44] Li W, Zuo X F, Liu R, Pang C M, Jin F, Zhu W W and Yuan C C 2024 Int. J. Plast. 174 103893 [45] Hou L, Shen P F, Wang B J, Shang Q Z, Liu L, Huang Y, Feng H C, Sun J, Liu H S and Li W H 2023 Mater. Today Commun. 35 106012 [46] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z and Bai H Y 2022 Nat. Mater. 21 1240 [47] Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J and Yang Y 2017 Mater. Today 20 293 [48] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y and Yang Y 2019 Prog. Mater. Sci. 104 250 [49] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817 [50] Zhao C.L, Wang A D, He A N, Yue S Q, Chang C T, Wang X M and Li R W 2016 J. Alloys Compd. 659 193 [51] Pang J, Wang A D, Yue S Q, Kong F Y, Qiu K Q, Chang C T, Wang X M and Liu C T 2017 J. Magn. Magn. Mater. 433 35 [52] Meng Y, Pang S J, Chang C T, Luan J H, Inoue A and Zhang T 2023 J. Alloys Compd. 940 168799 [53] Milkova D A, Bazlov A I, Zanaeva E N, Churyumov A Y, Strochko I V, Ubyivovk E V and Inoue A 2023 J. Non-Cryst. Solids 609 122234 [54] Kong F L, Chang C T, Inoue A, Shalaan E and Al-Marzouki F 2014 J. Alloys Compd. 615 163 [55] Makino A, Kubota T, Makabe M, Chang C T and Inoue A 2008 Mater. Sci. Eng. B 148 166 [56] Xu J, Yang Y Z, Li W, Xie Z W and Chen X C 2017 J. Alloys Compd. 727 610 [57] Wang A D, Zhao C L, He A N, Men H, Chang C T and Wang X M 2016 J. Alloys Compd. 656 729 [58] Makino A, Men H, Kubota T, Yubuta K and Inoue A 2009 J. Appl. Phys. 105 07A308 [59] Liu T, Li F C, Wang A D, Xie L, He Q F, Luan J H, He A N, Wang X M, Liu C T and Yang Y 2019 J. Alloys Compd. 776 606 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|