Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 126101    DOI: 10.1088/1674-1056/ad84c8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation

Benjun Wang(汪本军)1, Wenjun Liu(刘文君)1, Li Liu(刘莉)1, Yu Wang(王玉)1, Yu Hang(杭宇)1, Xinyu Wang(王新宇)1, Mengen Shi(施蒙恩)1, Hanchen Feng(冯汉臣)3, Long Hou(侯龙)1,2,†, Chenchen Yuan(袁晨晨)3, Zhong Li(李忠)4, and Weihuo Li(李维火)1,2
1 School of Materials Science and Engineering, School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China;
2 Wuhu Technology and Innovation Research Institute, Wuhu 242000, China;
3 School of Materials Science and Engineering, Instrumental Analysis Center, Southeast University, Nanjing 211189, China;
4 Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
Abstract  Compared to the commercial soft-magnetic alloys, the high saturation magnetic flux density ($B_{\rm s}$) and low coercivity ($H_{\rm c}$) of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of electronic products, thus attracting great attention. In this work, we designed a new FeNiBCuSi formulation with a novel atomic ratio, and the microstructure evolution and magnetic softness were investigated. Microstructure analysis revealed that the amount of Si prompted the differential chemical fluctuations of Cu element, favoring the different nucleation and growth processes of $\alpha $-Fe nanocrystals. Furthermore, microstructural defects associated with chemical heterogeneities were unveiled using the Maxwell-Voigt model with two Kelvin units and one Maxwell unit based on creeping analysis by nanoindentation. The defect, with a long relaxation time in relaxation spectra, was more likely to induce the formation of crystal nuclei that ultimately evolved into the $\alpha$-Fe nanocrystals. As a result, Fe$_{84}$Ni$_{2}$B$_{12.5}$Cu$_{1}$Si$_{0.5}$ alloy with refined uniform nanocrystalline microstructure exhibited excellent magnetic softness, including a high $B_{\rm s}$ of 1.79 T and very low $H_{\rm c}$ of 2.8 A/m. Our finding offers new insight into the influence of activated defects associated with chemical heterogeneities on the microstructures of nanocrystalline alloy with excellent magnetic softness.
Keywords:  nanocrystalline alloy      magnetic softness      microstructures      defects      nanoindentation  
Received:  03 July 2024      Revised:  27 September 2024      Accepted manuscript online:  09 October 2024
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the Anhui Provincial Natural Science Foundation (Grant No. 2208085QE121), the Key Research & Development Plan of Anhui Province (Grant No. 2022a05020016), the University Natural Science Research Project of Anhui Province (Grant No. 2023AH051084), and the National Natural Science Foundation of China (Grant No. 52071078).
Corresponding Authors:  Long Hou     E-mail:  longhou@ahut.edu.cn

Cite this article: 

Benjun Wang(汪本军), Wenjun Liu(刘文君), Li Liu(刘莉), Yu Wang(王玉), Yu Hang(杭宇), Xinyu Wang(王新宇), Mengen Shi(施蒙恩), Hanchen Feng(冯汉臣), Long Hou(侯龙), Chenchen Yuan(袁晨晨), Zhong Li(李忠), and Weihuo Li(李维火) Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation 2024 Chin. Phys. B 33 126101

[1] Bottauscio O 2013 Selected Papers from the 21st Soft Magnetic Materials Conference (SMM 21), September 1-4, 2013, Budapest, Hungary
[2] Jiang M F, Cai M J, Zhou J, Di S Y, Li X S, Luo Q and Shen B L 2023 Mater. Today Nano 22 100307
[3] Zhou J, Li X S, Hou X B, Ke H B, Fan X D, Luan J H, Peng H L, Zeng Q S, Lou H B, Wang J G, Liu C T, Shen B L, Sun B A, Wang W H and Bai H Y 2023 Adv. Mater. 35 e2304490
[4] Makino A, Kubota T, Yubuta K, Inoue A, Urata A, Matsumoto H and Yoshida S J 2011 Appl. Phys. 109
[5] Yao K F, Shi L X, Chen S Q, Shao Y, Chen N and Jia J L 2018 Acta. Phys. Sin. 67 016101 (in Chinese)
[6] Stückler M, Wurster S, Weissitsch L, Krenn H, Pippan R and Bachmaier A 2021 J. Mater. Res. Technol. 12 1235
[7] Stückler M, Wurster S, Pippan R and Bachmaier A 2021 AIP Adv. 11 015033
[8] Li X S, Zhou J, Shen L Q, Sun B A, Bai H Y andWangWH 2022 Adv. Mater. 35 2205863
[9] Hou L, Wang B J, Liu L, Mao X H, Zhang M Y, Yuan C C, Li Z, Ju W W, Feng H C, Tang C Y, Xia A L and Li W H J 2024 Mater. Sci. Technol. 200 27
[10] Hou L, Li M R, Jiang C, Fan X D, Luo Q, Chen S S, Song P D and Li W H 2021 J. Alloys Compd. 853 157071
[11] Hou L, Fan X D, Wang Q Q, Yang W M and Shen B L 2019 J. Mater. Sci. Technol. 35 1655
[12] Wan Q Y, Tian B, Zhang P L, Wang J H and Hua Z 2023 Chin. Phys. B 32 088102
[13] Zhao C L, Wang A D, Yue S Q, Liu T, He A N, Chang C T, Wang X M and Liu C T 2018 J. Alloys Compd. 742 220
[14] Luo Q, Li D H, Cai M J, Di S Y, Zhang Z G, Zeng Q S, Wang Q Q and Shen B L 2022 J. Mater. Sci. Technol. 116 72
[15] Shi L X, Qin X L and Yao K F 2020 Prog. Nat. Sci. 30 208
[16] Hou L, Yang W M, Luo Q, Fan X D, Liu H S and Shen B L 2020 J. Non-Cryst. Solids 530 119800
[17] Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hou L and Li W H 2023 Acta. Phys. Sin. 72 026101 (in Chinese)
[18] Shen B L, Inoue A and Chang C T 2004 Appl. Phys. Lett. 85 4911
[19] Wang C X, Wu Z Y, Feng X M, Li Z, Gu Y, Zhang Y, Tan X H and Xu H 2020 Intermetallics 118 106689
[20] Yoshizawa Y, Oguma S and Yamauchi K 1988 J. Appl. Phys. 64 6044
[21] Chen Y M, Ohkubo T, Ohta M, Yoshizawa Y and Hono K 2009 Acta Mater. 57 4463
[22] Parsons R, Garitaonandia J S, Yanai T, Onodera K, Kishimoto H, Kato A and Suzuki K 2017 J. Alloys Compd. 695 3156
[23] Wang Y C, Zhang Y, Makino A and Kawazoe Y 2018 J. Alloys Compd. 730 196
[24] Suzuki K, Parsons R, Zang B, Onodera K, Kishimoto H and Kato A 2017 Appl. Phys. Lett. 110 012407
[25] Zheng Z G, Chen Y B, Wei J, Wang X, Qiu Z G and Zeng D C 2023 J. Alloys Compd. 939 168621
[26] Parsons R, Zang B, Onodera K, Kishimoto H, Shoji T, Kato A and Suzuki K 2018 J. Magn. Magn. Mater. 476 142
[27] Zhai X B, Wang Y G, Zhu L, Zheng H, Dai Y D, Chen J K and Pan F M 2019 J. Magn. Magn. Mater. 480 47
[28] Fan X D, Zhang T, Yang W M, Luan J H, Jiao Z B and Li H 2023 J. Mater. Sci. Technol. 147 124
[29] Hou L, Jiang C, Liu H, Luo Q, Fan X D, Li W H and Li M R 2021 J. Alloys Compd. 859 157863
[30] Fan X D, Zhang T, Jiang M F, Yang W M and Shen B L 2019 J. Non- Cryst. Solids 503-504 36
[31] Jia X J, Zhang W, Dong Y Q, Li J W, He A N, Luan J H and Li R W 2022 J. Alloys Compd. 920 166030
[32] Herzer G 1989 IEEE Trans. Magn. 25 3327
[33] Ohta M and Yoshizawa Y 2007 Appl. Phys. Lett. 91 062517
[34] Meng Y, Pang S J, Chang C T, Bai X Y and Zhang T 2021 J. Magn. Magn. Mater. 523 167583
[35] Han Y, Inoue A, Kong F L, Chang C T and Al-Marzouki F 2016 J. Alloys Compd. 657 237
[36] Herzer G 2013 Acta Mater. 61 718
[37] Zhang H, Wang Z, Wen Z P and Wang J 2014 IEEE Trans. Magn. 50 7
[38] Kulik T, Matyja H and Lisowski B 1984 J. Magn. Magn. Mater. 43 135
[39] Suzuki K, Ito N, Garitaonandia J S, Cashion J D and Herzer G 2008 J. Non. Cryst. Solids 354 5089
[40] Hono K, Ping D H, Ohnuma M and Onodera H 1999 Acta Mater. 47 997
[41] Castellero A, Moser B, Uhlenhaut D I, Torre F H D and Löffler J F 2008 Acta Mater. 56 3777
[42] Lv Z.W, Yuan C C, Ke H B and Shen B L 2021 J. Mater. Sci. Technol. 69 42
[43] Ke H B, Zhang P, Sun B A, Zhang P G, Liu TW, Chen P H,Wu M and Huang H G 2019 J. Alloys Compd. 788 391
[44] Li W, Zuo X F, Liu R, Pang C M, Jin F, Zhu W W and Yuan C C 2024 Int. J. Plast. 174 103893
[45] Hou L, Shen P F, Wang B J, Shang Q Z, Liu L, Huang Y, Feng H C, Sun J, Liu H S and Li W H 2023 Mater. Today Commun. 35 106012
[46] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z and Bai H Y 2022 Nat. Mater. 21 1240
[47] Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J and Yang Y 2017 Mater. Today 20 293
[48] Qiao J C,Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y and Yang Y 2019 Prog. Mater. Sci. 104 250
[49] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817
[50] Zhao C.L, Wang A D, He A N, Yue S Q, Chang C T, Wang X M and Li R W 2016 J. Alloys Compd. 659 193
[51] Pang J, Wang A D, Yue S Q, Kong F Y, Qiu K Q, Chang C T, Wang X M and Liu C T 2017 J. Magn. Magn. Mater. 433 35
[52] Meng Y, Pang S J, Chang C T, Luan J H, Inoue A and Zhang T 2023 J. Alloys Compd. 940 168799
[53] Milkova D A, Bazlov A I, Zanaeva E N, Churyumov A Y, Strochko I V, Ubyivovk E V and Inoue A 2023 J. Non-Cryst. Solids 609 122234
[54] Kong F L, Chang C T, Inoue A, Shalaan E and Al-Marzouki F 2014 J. Alloys Compd. 615 163
[55] Makino A, Kubota T, Makabe M, Chang C T and Inoue A 2008 Mater. Sci. Eng. B 148 166
[56] Xu J, Yang Y Z, Li W, Xie Z W and Chen X C 2017 J. Alloys Compd. 727 610
[57] Wang A D, Zhao C L, He A N, Men H, Chang C T and Wang X M 2016 J. Alloys Compd. 656 729
[58] Makino A, Men H, Kubota T, Yubuta K and Inoue A 2009 J. Appl. Phys. 105 07A308
[59] Liu T, Li F C, Wang A D, Xie L, He Q F, Luan J H, He A N, Wang X M, Liu C T and Yang Y 2019 J. Alloys Compd. 776 606
[1] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[2] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[3] Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2024, 33(3): 037101.
[4] Physics through the microscope
Stephen J. Pennycook, Ryo Ishikawa, Haijun Wu(武海军), Xiaoxu Zhao(赵晓续), Changjian Li(黎长建), Duane Loh, Jiadong Dan, and Wu Zhou(周武). Chin. Phys. B, 2024, 33(11): 116801.
[5] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[6] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[7] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[8] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[9] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] Improving efficiency of n-i-p perovskite solar cells enabled by 3-carboxyphenylboronic acid additive
Bin-Jie Li(李斌杰), Jia-Wen Li(李嘉文), Gen-Jie Yang(杨根杰), Meng-Ge Wu(吴梦鸽), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2023, 32(10): 107801.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[14] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!