Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037101    DOI: 10.1088/1674-1056/acef04
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure

Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉)
College of Big Data and Information Engineering, Institute of New Optoelectronic Materials and Technology, Guizhou University, Guiyang 550025, China
Abstract  Recently, the newly synthesized septuple-atomic layer two-dimensional (2D) material MoSi2N4 (MSN) has attracted attention worldwide. Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene (Gr) heterostructure using first-principles calculation. We find that four types of defective structures, N-in, N-out, Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air. Moreover, vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure. Finally, the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts. Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.
Keywords:  MoSi2N4      vacancy defects      external electric field      Schottky contacts  
Received:  05 May 2023      Revised:  03 August 2023      Accepted manuscript online:  11 August 2023
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (Grant No. 2020-520000-83-01-324061), the National Natural Science Foundation of China (Grant No. 61264004), and the High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015).
Corresponding Authors:  Quan Xie     E-mail:  qxie@gzu.edu.cn

Cite this article: 

Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉) Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure 2024 Chin. Phys. B 33 037101

[1] Sangwan V K and Hersam M C 2018 Annu. Rev. Phys. Chem. 69 299
[2] Duerloo K A N, Ong M T and Reed E J 2012 J. Phys. Chem. Lett. 3 2871
[3] Taft E and Philipp H 1965 Phys. Rev. 138 A197
[4] Zhu X, Li F, Wang Y, Qiao M and Li Y 2018 J. Mater. Chem. C 6 4494
[5] Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T and Li Y 2017 Extreme Mech. Lett. 13 42
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[7] Li D and Kaner R B 2008 Science 320 1170
[8] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
[9] Kan E, Ren H, Wu F, Li Z, Lu R, Xiao C, Deng K and Yang J 2012 J. Phys. Chem. C 116 3142
[10] Neupane H K and Adhikari N P 2021 Nepal J. Sci. Technol. 20 55
[11] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Castro Neto A H 2016 Nat. Rev. Mater. 1 16061
[12] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[13] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423
[14] Wang Y, Ye M, Weng M, Li J, Zhang X, Zhang H, Guo Y, Pan Y, Xiao L and Liu J 2017 ACS Appl. Mater. Interfaces 9 29273
[15] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[16] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[17] Liang Q, Zhang Q, Zhao X, Liu M and Wee A T 2021 ACS Nano 15 2165
[18] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y and Zhang H 2012 Nano Lett. 12 1538
[19] Li H, Wu J, Yin Z and Zhang H 2014 Acc. Chem. Res. 47 1067
[20] Shi J, Ma D, Han G F, Zhang Y, Ji Q, Gao T, Sun J, Song X, Li C and Zhang Y 2014 ACS Nano 8 10196
[21] Liu X, Wang Y, Yang Y, Lv W, Lian G, Golberg D, Wang X, Zhao X and Ding Y 2020 Nano Energy 70 104550
[22] Nourbakhsh A, Zubair A, Sajjad R N, Tavakkoli KG A, Chen W, Fang S, Ling X, Kong J, Dresselhaus M S and Kaxiras E 2016 Nano Lett. 16 7798
[23] Jiao Y, Hafez A M, Cao D, Mukhopadhyay A, Ma Y and Zhu H 2018 Small 14 1800640
[24] Kumar R, Zheng W, Liu X, Zhang J and Kumar M 2020 Adv. Mater. Technol. 5 1901062
[25] Zhang X, Zhang R, Niu S, Zheng J and Guo C 2019 Appl. Surf. Sci. 475 355
[26] Huang Z, Han W, Tang H, Ren L, Chander D S, Qi X and Zhang H 2015 2D Mater. 2 035011
[27] Mikhaleva N S, Visotin M A, Kuzubov A A and Popov Z I 2017 J. Phys. Chem. C 121 24179
[28] Neupane H and Adhikari N 2020 Comput. Condens. Matter 24 e00489
[29] Neupane H K and Adhikari N P 2021 J. Mol. Model. 27 1
[30] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L and Sun D M 2020 Science 369 670
[31] Lu S, Zhang Y, Lou F, Guo K and Yu Z 2022 Appl. Surf. Sci. 579 152234
[32] Nguyen C V, Nguyen C Q, Nguyen S T, Ang Y S and Hieu N V 2022 J. Phys. Chem. Lett. 13 2576
[33] Xiao C, Sa R, Cui Z, Gao S, Du W, Sun X, Zhang X, Li Q and Ma Z 2021 Appl. Surf. Sci. 563 150388
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Blöchl P E 1994 Phys. Rev. B 50 17953
[38] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132
[39] Yang C, Song Z, Sun X and Lu J 2021 Phys. Rev. B 103 035308
[40] Wu Q, Cao L, Ang Y S and Ang L K 2021 Appl. Phys. Lett. 118
[41] Nie S, Bartelt N C, Wofford J M, Dubon O D, McCarty K F and Thürmer K 2012 Phys. Rev. B 85 205406
[42] Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V and Zhuang X 2021 Nano Energy 82 105716
[43] Kwon J, Lee J Y, Yu Y J, Lee C H, Cui X, Hone J and Lee G H 2017 Nanoscale 9 6151
[44] Vicario C, Monoszlai B and Hauri C P 2014 Phys. Rev. Lett. 112 213901
[45] Bokdam M, Khomyakov P A, Brocks G, Zhong Z and Kelly P J 2011 Nano Lett. 11 4631
[46] Sachs B, Britnell L, Wehling T, Eckmann A, Jalil R, Belle B, Lichtenstein A, Katsnelson M, Novoselov K 2013 Appl. Phys. Lett. 103 25
[1] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[2] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[3] Band alignment in SiC-based one-dimensional van der Waals homojunctions
Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华). Chin. Phys. B, 2021, 30(12): 126102.
[4] Alpha particle detector with planar double Schottky contacts directly fabricated on semi-insulating GaN:Fe template
Qun-Si Yang(羊群思), Qing Liu(刘清), Dong Zhou(周东), Wei-Zong Xu(徐尉宗), Yi-Wang Wang(王宜望), Fang-Fang Ren(任芳芳), and Hai Lu(陆海). Chin. Phys. B, 2021, 30(11): 117303.
[5] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[6] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[7] Saturated sodium chloride solution under an external static electric field: A molecular dynamics study
Ren Gan (任淦), Wang Yan-Ting (王延颋). Chin. Phys. B, 2015, 24(12): 126402.
[8] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[9] Electric field-induced hole injection-enhanced photoluminescence in a N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine-based emitter
Xu-Xie Hui-Na (许谢慧娜), Li Wen-Bin (李文彬), Peng Huan (彭欢), He Yun (何鋆), Yu Hao-Miao (于浩淼), Hou Xiao-Yuan (侯晓远). Chin. Phys. B, 2014, 23(4): 047202.
[10] Molecular properties and potential energy function model of BH under external electric field
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Wan Hui-Jun (万慧军), Zhang Xin-Qin (张新琴), Xie An-Dong (谢安东). Chin. Phys. B, 2013, 22(12): 123101.
[11] Properties of a Si2N molecule under an external electric field
Xu Guo-Liang(徐国亮), Xie Hui-Xiang(谢会香), Yuan Wei(袁伟), Zhang Xian-Zhou(张现周), and Liu Yu-Fang(刘玉芳) . Chin. Phys. B, 2012, 21(5): 053101.
[12] Thermal stability of tungsten and tungsten nitride Schottky contacts to AlGaN/GaN
Liu Fang(刘芳), Qin Zhi-Xin(秦志新), Xu Fu-Jun(许福军), Zhao Sheng(赵胜), Kang Xiang-Ning(康香宁), Shen Bo(沈波), and Zhang Guo-Yi(张国义). Chin. Phys. B, 2011, 20(6): 067303.
[13] PEDOT:PSS Schottky contacts on annealed ZnO films
Zhu Ya-Bin(朱亚彬), Hu Wei(胡伟), Na Jie(纳杰), He Fan(何帆), Zhou Yue-Liang(周岳亮), and Chen Cong(陈聪) . Chin. Phys. B, 2011, 20(4): 047301.
[14] Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field
Luo Yu-Pin(罗煜聘), Tien Li-Gan(田力耕), Tsai Chuen-Horng(蔡春鸿), Lee Ming-Hsien(李明宪), and Li Feng-Yin(李丰颖). Chin. Phys. B, 2011, 20(1): 017302.
[15] Influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a Rashba two-dimensional electron gas
Yan Yu-Zhen(颜玉珍) and Hu Liang-Bin(胡梁宾). Chin. Phys. B, 2010, 19(4): 047203.
No Suggested Reading articles found!