Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017701    DOI: 10.1088/1674-1056/ad9456
TOPICAL REVIEW — Moiré physics in two-dimensional materials Prev   Next  

Manipulating optical and electronic properties through interfacial ferroelectricity

Yulu Liu(刘钰璐)1, Gan Liu(刘敢)1, and Xiaoxiang Xi(奚啸翔)1,2,3,†
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Jiangsu Physical Science Research Center, Nanjing 210093, China
Abstract  Interfacial ferroelectricity is a recently established mechanism for generating spontaneous reversible electric polarization, arising from the charge transfer between stacked van der Waals layered atomic crystals. It has been realized in both naturally formed multilayer crystals and moiré superlattices. Owing to the large number of material choices and combinations, this approach is highly versatile, greatly expanding the scope of ultrathin ferroelectrics. A key advantage of interfacial ferroelectricity is its potential to couple with preexisting properties of the constituent layers, enabling their electrical manipulation through ferroelectric switching and paving the way for advanced device functionalities. This review article summarizes recent experimental progress in interfacial ferroelectricity, with an emphasis on its coupling with a variety of electronic properties. After introducing the underlying mechanism of interfacial ferroelectricity and the range of material systems discovered to date, we highlight selected examples showcasing ferroelectric control of excitonic optical properties, Berry curvature effects, and superconductivity. We also discuss the challenges and opportunities that await further studies in this field.
Keywords:  interfacial ferroelectricity      sliding ferroelectricity      moiré      ferroelectricity  
Received:  27 September 2024      Revised:  02 November 2024      Accepted manuscript online:  19 November 2024
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20231529 and BK20233001), the National Key Research and Development Program of China (Grant No. 2024YFA1409100), the Fundamental Research Funds for the Central Universities (Grant No. 0204-14380233), the National Natural Science Foundation of China (Grant Nos. 12474170 and 123B2059), and the National Postdoctoral Program for Innovative Talents (Grant No. BX20240160).
Corresponding Authors:  Xiaoxiang Xi     E-mail:  xxi@nju.edu.edu

Cite this article: 

Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔) Manipulating optical and electronic properties through interfacial ferroelectricity 2025 Chin. Phys. B 34 017701

[1] Wadhawan V 2000 Introduction to Ferroic Materials, 1st Edn. (CRC Press)
[2] Rabe K M, Ahn C H and Triscone J M (eds) 2007 Physics of Ferroelectrics: A Modern Perspective (Berlin, Heidelberg: Springer Berlin Heidelberg)
[3] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083
[4] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, DuanW, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H 2016 Science 353 274
[5] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L,Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y and Pan X 2019 Nature 570 87
[6] Cheema S S, Kwon D, Shanker N, dos Reis R, Hsu S L, Xiao J, Zhang H, Wagner R, Datar A, McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J,Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J and Salahuddin S 2020 Nature 580 478
[7] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun. 7 12357
[8] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508
[9] Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X and Li L J 2018 Nano Lett. 18 1253
[10] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601
[11] Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M and Hao J 2019 Nat. Commun. 10 1775
[12] Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y and Wee A T S 2023 Nature 617 67
[13] Li L and Wu M 2017 ACS Nano 11 6382
[14] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336
[15] Yasuda K, Wang X R, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Science 372 1458
[16] Stern M V, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O and Ben Shalom M 2021 Science 372 1462
[17] Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J and Duan C 2020 Adv. Electron. Mater. 6 1900818
[18] Wu M H and Li J 2022 Proc. Natl. Acad. Sci. USA 118 e2115703118
[19] Zhang D, Schoenherr P, Sharma P and Seidel J 2023 Nat. Rev. Mater. 8 25
[20] Zhang X and Peng B 2023 J. Semicond. 44 011002
[21] Fan Z, Qu J, Wang T, Wen Y, An Z, Jiang Q, Xue W, Zhou P and Xu X 2023 Chin. Phys. B 32 128508
[22] Chen J, Cui P and Zhang Z 2024 Adv. Funct. Mater. 34 2408625
[23] Li S, Wang F, Wang Y, Yang J, Wang X, Zhan X, He J and Wang Z 2024 Adv. Mater. 36 2301472
[24] Ji J, Yu G, Xu C and Xiang H J 2023 Phys. Rev. Lett. 130 146801
[25] Wang L, Qi J, Wei W, Wu M, Zhang Z, Li X, Sun H, Guo Q, Cao M, Wang Q, Zhao C, Sheng Y, Liu Z, Liu C, Wu M, Xu Z, Wang W, Hong H, Gao P, Wu M, Wang Z J, Xu X, Wang E, Ding F, Zheng X, Liu K and Bai X 2024 Nature 629 74
[26] Yasuda K, Zalys-Geller E, Wang X, Bennett D, Cheema S S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P and Ashoori R 2024 Science 385 53
[27] Meng P, Wu Y Z, Bian R J, Pan E, Dong B, Zhao X X, Chen J G, Wu L S, Sun Y Q, Fu Q D, Liu Q, Shi D, Zhang Q, Zhang Y W, Liu Z and Liu F C 2022 Nat. Commun. 13 7696
[28] Yang D, Liang J, Wu J, Xiao Y, Dadap J I, Watanabe K, Taniguchi T and Ye Z 2024 Nat. Commun. 15 1389
[29] Bian R, He R, Pan E, Li Z, Cao G, Meng P, Chen J, Liu Q, Zhong Z, Li W and Liu F 2024 Science 385 57
[30] Jindal A, Saha A, Li Z Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N and Rhodes D A 2023 Nature 613 48
[31] Wan Y, Hu T, Mao X, Fu J, Yuan K, Song Y, Gan X, Xu X, Xue M, Cheng X, Huang C, Yang J, Dai L, Zeng H and Kan E 2022 Phys. Rev. Lett. 128 067601
[32] Wang X R, Yasuda K, Zhang Y, Liu S,Watanabe K, Taniguchi T, Hone J, Fu L and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367
[33] Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S G, Corte-León H, Wu Z F, Clark N, Summerfield A, Hashimoto T, Gao Y Z, Wang W D, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal’ko V I and Gorbachev R 2022 Nat. Nanotechnol. 17 390
[34] Van Winkle M, Dowlatshahi N, Khaloo N, Iyer M, Craig I M, Dhall R, Taniguchi T,Watanabe K and Bediako D K 2024 Nat. Nanotechnol. 19 751
[35] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X, Zhang X and Lindenberg A M 2020 Nat. Phys. 16 1028
[36] Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R and Seidel J 2019 Sci. Adv. 5 eaax5080
[37] Deb S, CaoW, Raab N,Watanabe K, Taniguchi T, Goldstein M, Kronik L, Urbakh M, Hod O and Ben Shalom M 2022 Nature 612 465
[38] Rogée L, Wang L, Zhang Y, Cai S H, Wang P, Chhowalla M, Ji W and Lau S P 2022 Science 376 973
[39] Zheng Z R, Ma Q, Bi Z, de la Barrera S, Liu M H, Mao N N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y and Jarillo-Herrero P 2020 Nature 588 71
[40] Niu R R, Li Z X, Han X Y, Qu Z Z, Ding D D,Wang Z Y, Liu Q L, Liu T Y, Han C R, Watanabe K, Taniguchi T, Wu M H, Ren Q, Wang X Y, Hong J W, Mao J H, Han Z, Liu K H, Gan Z Z and Lu J M 2022 Nat. Commun. 13 6241
[41] Niu R, Li Z, Han X, Liu Q, Qu Z, Wang Z, Han C, Watanabe K, Taniguchi T, Liu K, Mao J, Shi W, Peng B, Han Z V, Gan Z and Lu J 2024 arXiv:2403.17326 [cond-mat.mtrl-sci]
[42] Yan X, Zheng Z, Sangwan V K, Qian J H, Wang X, Liu S E, Watanabe K, Taniguchi T, Xu S Y, Jarillo-Herrero P, Ma Q and HersamMC 2023 Nature 624 551
[43] Mak K F and Shan J 2016 Nat. Photon. 10 216
[44] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zólyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A, Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592
[45] Sung J, Zhou Y, Scuri G, Zólyomi V, Andersen T I, Yoo H, Wild D S, Joe A Y, Gelly R J, Heo H, Magorrian S J, Bérubé D, Valdivia A M M, Taniguchi T, Watanabe K, Lukin M D, Kim P, Fal’ko V I and Park H 2020 Nat. Nanotechnol. 15 750
[46] Ciarrocchi A, Unuchek D, Avsar A, Watanabe K, Taniguchi T and Kis A 2019 Nat. Photon. 13 131
[47] Deb S, Krause J, Faria Junior P E, Kempf M A, Schwartz R, Watanabe K, Taniguchi T, Fabian J and Korn T 2024 Nat. Commun. 15 7595
[48] Andersen T I, Scuri G, Sushko A, De Greve K, Sung J, Zhou Y, Wild D S, Gelly R J, Heo H, Bérubé D, Joe A Y, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Park H and Lukin M D 2021 Nat. Mater. 20 480
[49] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[50] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[51] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N and Zhang X X 2017 Nat. Commun. 8 2150
[52] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[53] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76
[54] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926
[55] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A and Cobden D H 2018 Science 362 922
[56] Jia Y, Wang P, Chiu C L, Song Z, Yu G, Jack B, Lei S, Klemenz S, Cevallos F A, Onyszczak M, Fishchenko N, Liu X, Farahi G, Xie F, Xu Y, Watanabe K, Taniguchi T, Bernevig B A, Cava R J, Schoop L M, Yazdani A and Wu S 2022 Nat. Phys. 18 87
[57] Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, Xu X, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M and Cobden D H 2022 Nat. Phys. 18 94
[58] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[59] Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier Valdivia A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N and Jarillo-Herrero P 2019 Nature 565 337
[60] Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324
[61] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
[62] Wang H and Qian X 2019 npj Comput. Mater. 5 119
[63] Yang Q, Wu M and Li J 2018 J. Phys. Chem. Lett. 9 7160
[64] Kang K, Zhao W, Zeng Y, Watanabe K, Taniguchi T, Shan J and Mak K F 2023 Nat. Nanotechnol. 18 861
[65] Chen M, Xie Y, Cheng B, Yang Z, Li X Z, Chen F, Li Q, Xie J, Watanabe K, Taniguchi T, He W Y, Wu M, Liang S J and Miao F 2024 Nat. Nanotechnol. 19 962
[66] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 588 610
[67] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A and Young A F 2021 Nat. Phys. 17 478
[68] Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2021 Nature 589 536
[69] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y 2021 Nat. Mater. 20 488
[70] Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A and Efetov D K 2021 Nat. Phys. 17 710
[71] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 592 43
[72] Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nat. Phys. 17 1210
[73] Klein D R, Xia L Q, MacNeill D,Watanabe K, Taniguchi T and Jarillo- Herrero P 2023 Nat. Nanotechnol. 18 331
[74] Liang Y, Mao N, Dai Y, Kou L Z, Huang B B and Ma Y D 2021 npj Comput. Mater. 7 172
[75] Wu F, Lovorn T, Tutuc E, Martin I and MacDonald A H 2019 Phys. Rev. Lett. 122 086402
[76] Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W and Xu X 2023 Nature 622 63
[77] Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F and Shan J 2023 Nature 622 69
[78] Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X,Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D and Xu X 2023 Nature 622 74
[79] Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y,Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X and Li T 2023 Phys. Rev. X 13 031037
[80] Foutty B A, Kometter C R, Devakul T, Reddy A P, Watanabe K, Taniguchi T, Fu L and Feldman B E 2024 Science 384 343
[81] Zhang XW,Wang C, Liu X, Fan Y, Cao T and Xiao D 2024 Nat. Commun. 15 4223
[82] Ahn C H, Bhattacharya A, Di Ventra M, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D and Triscone J M 2006 Rev. Mod. Phys. 78 1185
[83] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[84] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[85] Rhodes D A, Jindal A, Yuan N F Q, Jung Y, Antony A, Wang H, Kim B, Chiu Y c, Taniguchi T, Watanabe K, Barmak K, Balicas L, Dean C R, Qian X, Fu L, Pasupathy A N and Hone J 2021 Nano Lett. 21 2505
[86] Zhai B, Li B, Wen Y, Wu F and He J 2022 Phys. Rev. B 106 L140505
[87] Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C and Liu K 2024 Science 385 99
[88] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[89] Xi X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801
[90] Liu X, Pyatakov A P and Ren W 2020 Phys. Rev. Lett. 125 247601
[91] Liu K, Ma X, Xu S, Li Y and Zhao M 2023 npj Comput. Mater. 9 16
[92] Xun W, Wu C, Sun H, Zhang W, Wu Y Z and Li P 2024 Nano Lett. 24 3541
[93] Zhang T, Liang Y, Xu X, Huang B, Dai Y and Ma Y 2021 Phys. Rev. B 103 165420
[94] Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K and Barthélémy A 2010 Science 327 1106
[95] Chen X F, Ding X K, Gou G Y and Zeng X C 2024 Nano Lett. 24 3089
[96] Jafari H, Barts E, Przybysz P, Tenzin K, Kowalczyk P J, Dabrowski P and Sławińska J 2024 Phys. Rev. Mater. 8 024005
[97] Meier D and Selbach S M 2022 Nat. Rev. Mater. 7 157
[1] Correlated physics, charge and magnetic orders in moiré kagomé systems
Zhaochen Liu(刘兆晨) and Jing Wang(王靖). Chin. Phys. B, 2025, 34(2): 027304.
[2] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
[3] Chiral phonons of honeycomb-type bilayer Wigner crystals
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(1): 017301.
[4] Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films
S X Chen(陈思学), M M Chen(陈明明), Y Liu(刘圆), D W Cao(曹大威), and G J Chen(陈国杰). Chin. Phys. B, 2024, 33(9): 098701.
[5] Theory and verification of moiré fringes for x-ray three-phase grating interferometer
Yu-Zheng Shan(单雨征), Yong-Shuai Ge(葛永帅), Jun Yang(杨君), Da-Yu Guo(郭大育), Xue-Bao Cai(蔡学宝), Xiao-Ke Liu(刘晓珂), Xiao-Wen Hou(侯晓文), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2024, 33(5): 056101.
[6] Peak structure in the interlayer conductance of Moiré superlattices
Yizhou Tao(陶懿洲), Chao Liu(刘超), Mingwen Xiao(肖明文), and Henan Fang(方贺男). Chin. Phys. B, 2024, 33(10): 107301.
[7] Epitaxial growth of trilayer graphene moiré superlattice
Yalong Yuan(袁亚龙), Yanbang Chu(褚衍邦), Cheng Hu(胡成), Jinpeng Tian(田金朋), Le Liu(刘乐), Fanfan Wu(吴帆帆), Yiru Ji(季怡汝), Jiaojiao Zhao(赵交交), Zhiheng Huang(黄智恒), Xiaozhou Zan(昝晓洲), Luojun Du(杜罗军), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Zhiwen Shi(史志文), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2023, 32(7): 077304.
[8] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[9] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[10] Moiré Dirac fermions in transition metal dichalcogenides heterobilayers
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军). Chin. Phys. B, 2023, 32(10): 107307.
[11] Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion
Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2023, 32(10): 107308.
[12] Effects of strain on the flat band in twisted bilayer graphene
Zhen Zhang(张镇), Lu Wen(文露), Youkai Qiao(乔友凯), and Zhiqiang Li(李志强). Chin. Phys. B, 2023, 32(10): 107302.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[15] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
No Suggested Reading articles found!