|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Pressure distribution imaging through wide-field optical detected magnetic resonance |
| Chaofan Lv(吕超凡)1,2,3,†, Kai Ma(马凯)1,†, Feihu Lei(雷飞虎)1, Yidan Qu(屈怡丹)1, Qilong Wu(吴琦隆)1, Wuyou Zhang(张吾优)1, Yingjie Zhang(张英杰)1, Huihui Yu(余辉辉)1, Xuanming Shen(申炫铭)1, Yuan Zhang(张元)1,‡, Xigui Yang(杨西贵)1,§, and Chongxin Shan(单崇新)1,¶ |
1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China; 2 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract Non-hydrostatic stress plays a significant role in shaping the properties of materials under compression. High-pressure effects such as yielding deformation, phase transitions, and volume contraction can alter the pressure distribution within the pressure chamber. However, due to the inherent size limitation of the diamond anvil cell (DAC), in situ high-pressure studies usually assume a hydrostatic environment, equaling the pressure of samples to a pressure calibrator inside the chamber. Accurately imaging pressure distribution within the DAC chamber remains challenging, particularly as the material undergoes phase transitions. Here, we present a method for mapping pressure distribution with high spatial resolution using wide-field optically detected magnetic resonance (ODMR) of nanodiamonds. The pressure gradients during the high-pressure transition of zinc oxide (ZnO) were compared using both the multiple rubies technique and wide-field ODMR. The latter technique demonstrated superior spatial resolution, easier operation, and more detailed information. These results highlight the potential of wide-field ODMR as a powerful tool for precise pressure sensing, particularly in studies involving non-hydrostatic pressure conditions.
|
Received: 25 February 2025
Revised: 08 May 2025
Accepted manuscript online: 22 May 2025
|
|
PACS:
|
76.70.Hb
|
(Optically detected magnetic resonance (ODMR))
|
| |
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
| |
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
| |
81.05.ug
|
(Diamond)
|
| |
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
| Fund: This work was supported by the National Key R&D Program of China (Grant No. 2024YFE0105200) and the National Natural Science Foundation of China (Grant Nos. 62422408, 12374016, 12174348, 62271450, 62027816, 12422413, and 62475242). |
Corresponding Authors:
Yuan Zhang, Xigui Yang, Chongxin Shan
E-mail: yzhuaudipc@zzu.edu.cn;yangxg@zzu.edu.cn;cxshan@zzu.edu.cn
|
Cite this article:
Chaofan Lv(吕超凡), Kai Ma(马凯), Feihu Lei(雷飞虎), Yidan Qu(屈怡丹), Qilong Wu(吴琦隆), Wuyou Zhang(张吾优), Yingjie Zhang(张英杰), Huihui Yu(余辉辉), Xuanming Shen(申炫铭), Yuan Zhang(张元), Xigui Yang(杨西贵), and Chongxin Shan(单崇新) Pressure distribution imaging through wide-field optical detected magnetic resonance 2025 Chin. Phys. B 34 087601
|
[1] Du M and He D 2024 Chin. Phys. B 33 110701 [2] Liu C, Song X, Li Q, Ma Y and Chen C 2019 Phys. Rev. Lett. 123 195504 [3] Lv R, TuW, Shao D, Sun Y and Lu W 2023 Chin. Phys. Lett. 40 117401 [4] Sung C, Goetze C and Mao H 1977 Rev. Sci. Instrum. 48 1386 [5] Piermarini G J, Block S and Barnett J D 1973 J. Appl. Phys. 44 5377 [6] Levitas V I, Dhar A and Pandey K K 2023 Nat. Commun. 14 5955 [7] Bassett W A 2006 J. Phys.: Condens. Matter 18 S921 [8] Jiang S, Chen X, Huang X, Li C, Wang Z, Zhao B, Zhang L, Zhou G and Fang J 2024 J. Am. Chem. Soc. 146 8598 [9] Song X, Liu C, Li Q, Hemley R J, Ma Y and Chen C 2022 Proc. Natl. Acad. Sci. 119 e2122691119 [10] Wang S, Zhao X, Hu K, Feng B, Hou X, Zhang Y, Liu S, Shang Y, Liu Z, Yao M and Liu B 2024 Chin. Phys. B 33 098104 [11] Delogu F 2008 Phys. Rev. Lett. 100 255901 [12] Dong J, Yao Z, Yao M, Li R, Hu K, Zhu L, Wang Y, Sun H, Sundqvist B, Yang K and Liu B 2020 Phys. Rev. Lett. 124 065701 [13] Levitas V I, Ma Y, Hashemi J, Holtz M and Guven N 2006 J. Chem. Phys. 125 044507 [14] Levitas V I 2004 Phys. Rev. B 70 184118 [15] Turneaure S J, Sharma S M, Volz T J, Winey J M and Gupta Y M 2017 Sci. Adv. 3 e3561 [16] Ji C, Levitas V I, Zhu H, Chaudhuri J, Marathe A and Ma Y 2012 Proc. Natl. Acad. Sci. 109 19108 [17] Li W, Fan H and Li J 2014 Nano Lett. 14 4951 [18] Xiao T, Nagaoka Y, Wang X, Jiang T, LaMontagne D, Zhang Q, Cao C, Diao X, Qiu J, Lu Y, Wang Z and Cao Y C 2022 Science 377 870 [19] Li B, Bian K, Zhou X, Lu P, Liu S, Brener I, Sinclair M, Luk T, Schunk H, Alarid L, Clem P G, Wang Z and Fan H 2017 Sci. Adv. 3 e1602916 [20] Zhu Y, Peng D, Zhang E, et al. 2024 Nature 631 531 [21] Umeo K, Takikawa R, Onimaru T, Adachi M, Matsumoto K T and Takabatake T 2020 Phys. Rev. B 102 094505 [22] Hemley R J, Mao H, Shen G, Badro J, Gillet P, Hanfland M and Häusermann D 1997 Science 276 1242 [23] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. Solid Earth 91 4673 [24] Siyushev P, Pinto H, Vörös M, Gali A, Jelezko F and Wrachtrup J 2013 Phys. Rev. Lett. 110 167402 [25] Ho K O, Leung M Y, Reddy P, Xie J, Wong K C, Jiang Y, Zhang W, Yip K Y, Leung W K, Pang Y Y, Yu K Y, Goh S K, Doherty M W and Yang S 2022 Phys. Rev. Appl. 18 064042 [26] Dai J H, Shang Y X, Yu Y H, Xu Y, Yu H, Hong F, Yu X H, Pan X Y and Liu G Q 2022 Chin. Phys. Lett. 39 117601 [27] Broadway D A, Johnson B C, Barson M S J, Lillie S E, Dontschuk N, McCloskey D J, Tsai A, Teraji T, Simpson D A, Stacey A, McCallum J C, Bradby J E, Doherty M W, Hollenberg L C L and Tetienne J P 2019 Nano Lett. 19 4543 [28] Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R and Yao N Y 2019 Science 366 1349 [29] Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P and Roch J F 2019 Science 366 1359 [30] Yip K Y, Ho K O, Yu K Y, Chen Y, ZhangW, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K and Yang S 2019 Science 366 1355 [31] Ho K O, Leung M Y, Jiang Y, Ao K P, Zhang W, Yip K Y, Pang Y Y, Wong K C, Goh S K and Yang S 2020 Phys. Rev. Appl. 13 024041 [32] Yu S J, Kang M W, Chang H C, Chen K M and Yu Y C 2005 J. Am. Chem. Soc. 127 17604 [33] Chen J, Deng S Z, Chen J, Yu Z X and Xu N S 1999 Appl. Phys. Lett. 74 3651 [34] Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L and Shan C 2021 Carbon 173 427 [35] Chen Y C, Salter P S, Knauer S, Weng L, Frangeskou A C, Stephen C J, Ishmael S N, Dolan P R, Johnson S, Green B L, Morley G W, Newton M E, Rarity J G, Booth M J and Smith J M 2017 Nature Photon. 11 77 [36] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644 [37] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810 [38] Bian K, Zheng W, Zeng X, Chen X, Stöhr R, Denisenko A, Yang S, Wrachtrup J and Jiang Y 2021 Nat. Commun. 12 2457 [39] Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nature 500 54 [40] Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L and Prawer S 2014 Phys. Rev. Lett. 112 047601 [41] Hilberer A, Toraille L, Dailledouze C, Adam M P, Hanlon L, Weck G, Schmidt M, Loubeyre P and Roch J F 2023 Phys. Rev. B 107 L220102 [42] Ivády V, Simon T, Maze J R, Abrikosov I A and Gali A 2014 Phys. Rev. B 90 235205 [43] Yang X, Dong L, Shan C, Sun J, Zhang N, Wang S, Jiang M, Li B, Xie X and Shen D 2017 Adv. Mater. 29 1602832 [44] Mitra S S, Brafman O, DanielsWB and Crawford R K 1969 Phys. Rev. 186 942 [45] Lv C, Yang X, Wu Y, Lei F, Liang Y, Yang D, Sui L, Qin J, Wu Q, Lai S, Liu H, Zang J, Cheng S, Liu K and Shan C 2025 Nat. Commun. 16 1913 [46] Decremps F, Pellicer-Porres J, Saitta A M, Chervin J C and Polian A 2002 Phys. Rev. B 65 092101 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|