Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087601    DOI: 10.1088/1674-1056/addbc9
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Pressure distribution imaging through wide-field optical detected magnetic resonance

Chaofan Lv(吕超凡)1,2,3,†, Kai Ma(马凯)1,†, Feihu Lei(雷飞虎)1, Yidan Qu(屈怡丹)1, Qilong Wu(吴琦隆)1, Wuyou Zhang(张吾优)1, Yingjie Zhang(张英杰)1, Huihui Yu(余辉辉)1, Xuanming Shen(申炫铭)1, Yuan Zhang(张元)1,‡, Xigui Yang(杨西贵)1,§, and Chongxin Shan(单崇新)1,¶
1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China;
2 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Non-hydrostatic stress plays a significant role in shaping the properties of materials under compression. High-pressure effects such as yielding deformation, phase transitions, and volume contraction can alter the pressure distribution within the pressure chamber. However, due to the inherent size limitation of the diamond anvil cell (DAC), in situ high-pressure studies usually assume a hydrostatic environment, equaling the pressure of samples to a pressure calibrator inside the chamber. Accurately imaging pressure distribution within the DAC chamber remains challenging, particularly as the material undergoes phase transitions. Here, we present a method for mapping pressure distribution with high spatial resolution using wide-field optically detected magnetic resonance (ODMR) of nanodiamonds. The pressure gradients during the high-pressure transition of zinc oxide (ZnO) were compared using both the multiple rubies technique and wide-field ODMR. The latter technique demonstrated superior spatial resolution, easier operation, and more detailed information. These results highlight the potential of wide-field ODMR as a powerful tool for precise pressure sensing, particularly in studies involving non-hydrostatic pressure conditions.
Keywords:  optically detected magnetic resonance (ODMR)      high-pressure      phase transition      ZnO  
Received:  25 February 2025      Revised:  08 May 2025      Accepted manuscript online:  22 May 2025
PACS:  76.70.Hb (Optically detected magnetic resonance (ODMR))  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  64.70.Nd (Structural transitions in nanoscale materials)  
  81.05.ug (Diamond)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2024YFE0105200) and the National Natural Science Foundation of China (Grant Nos. 62422408, 12374016, 12174348, 62271450, 62027816, 12422413, and 62475242).
Corresponding Authors:  Yuan Zhang, Xigui Yang, Chongxin Shan     E-mail:  yzhuaudipc@zzu.edu.cn;yangxg@zzu.edu.cn;cxshan@zzu.edu.cn

Cite this article: 

Chaofan Lv(吕超凡), Kai Ma(马凯), Feihu Lei(雷飞虎), Yidan Qu(屈怡丹), Qilong Wu(吴琦隆), Wuyou Zhang(张吾优), Yingjie Zhang(张英杰), Huihui Yu(余辉辉), Xuanming Shen(申炫铭), Yuan Zhang(张元), Xigui Yang(杨西贵), and Chongxin Shan(单崇新) Pressure distribution imaging through wide-field optical detected magnetic resonance 2025 Chin. Phys. B 34 087601

[1] Du M and He D 2024 Chin. Phys. B 33 110701
[2] Liu C, Song X, Li Q, Ma Y and Chen C 2019 Phys. Rev. Lett. 123 195504
[3] Lv R, TuW, Shao D, Sun Y and Lu W 2023 Chin. Phys. Lett. 40 117401
[4] Sung C, Goetze C and Mao H 1977 Rev. Sci. Instrum. 48 1386
[5] Piermarini G J, Block S and Barnett J D 1973 J. Appl. Phys. 44 5377
[6] Levitas V I, Dhar A and Pandey K K 2023 Nat. Commun. 14 5955
[7] Bassett W A 2006 J. Phys.: Condens. Matter 18 S921
[8] Jiang S, Chen X, Huang X, Li C, Wang Z, Zhao B, Zhang L, Zhou G and Fang J 2024 J. Am. Chem. Soc. 146 8598
[9] Song X, Liu C, Li Q, Hemley R J, Ma Y and Chen C 2022 Proc. Natl. Acad. Sci. 119 e2122691119
[10] Wang S, Zhao X, Hu K, Feng B, Hou X, Zhang Y, Liu S, Shang Y, Liu Z, Yao M and Liu B 2024 Chin. Phys. B 33 098104
[11] Delogu F 2008 Phys. Rev. Lett. 100 255901
[12] Dong J, Yao Z, Yao M, Li R, Hu K, Zhu L, Wang Y, Sun H, Sundqvist B, Yang K and Liu B 2020 Phys. Rev. Lett. 124 065701
[13] Levitas V I, Ma Y, Hashemi J, Holtz M and Guven N 2006 J. Chem. Phys. 125 044507
[14] Levitas V I 2004 Phys. Rev. B 70 184118
[15] Turneaure S J, Sharma S M, Volz T J, Winey J M and Gupta Y M 2017 Sci. Adv. 3 e3561
[16] Ji C, Levitas V I, Zhu H, Chaudhuri J, Marathe A and Ma Y 2012 Proc. Natl. Acad. Sci. 109 19108
[17] Li W, Fan H and Li J 2014 Nano Lett. 14 4951
[18] Xiao T, Nagaoka Y, Wang X, Jiang T, LaMontagne D, Zhang Q, Cao C, Diao X, Qiu J, Lu Y, Wang Z and Cao Y C 2022 Science 377 870
[19] Li B, Bian K, Zhou X, Lu P, Liu S, Brener I, Sinclair M, Luk T, Schunk H, Alarid L, Clem P G, Wang Z and Fan H 2017 Sci. Adv. 3 e1602916
[20] Zhu Y, Peng D, Zhang E, et al. 2024 Nature 631 531
[21] Umeo K, Takikawa R, Onimaru T, Adachi M, Matsumoto K T and Takabatake T 2020 Phys. Rev. B 102 094505
[22] Hemley R J, Mao H, Shen G, Badro J, Gillet P, Hanfland M and Häusermann D 1997 Science 276 1242
[23] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. Solid Earth 91 4673
[24] Siyushev P, Pinto H, Vörös M, Gali A, Jelezko F and Wrachtrup J 2013 Phys. Rev. Lett. 110 167402
[25] Ho K O, Leung M Y, Reddy P, Xie J, Wong K C, Jiang Y, Zhang W, Yip K Y, Leung W K, Pang Y Y, Yu K Y, Goh S K, Doherty M W and Yang S 2022 Phys. Rev. Appl. 18 064042
[26] Dai J H, Shang Y X, Yu Y H, Xu Y, Yu H, Hong F, Yu X H, Pan X Y and Liu G Q 2022 Chin. Phys. Lett. 39 117601
[27] Broadway D A, Johnson B C, Barson M S J, Lillie S E, Dontschuk N, McCloskey D J, Tsai A, Teraji T, Simpson D A, Stacey A, McCallum J C, Bradby J E, Doherty M W, Hollenberg L C L and Tetienne J P 2019 Nano Lett. 19 4543
[28] Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R and Yao N Y 2019 Science 366 1349
[29] Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P and Roch J F 2019 Science 366 1359
[30] Yip K Y, Ho K O, Yu K Y, Chen Y, ZhangW, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K and Yang S 2019 Science 366 1355
[31] Ho K O, Leung M Y, Jiang Y, Ao K P, Zhang W, Yip K Y, Pang Y Y, Wong K C, Goh S K and Yang S 2020 Phys. Rev. Appl. 13 024041
[32] Yu S J, Kang M W, Chang H C, Chen K M and Yu Y C 2005 J. Am. Chem. Soc. 127 17604
[33] Chen J, Deng S Z, Chen J, Yu Z X and Xu N S 1999 Appl. Phys. Lett. 74 3651
[34] Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L and Shan C 2021 Carbon 173 427
[35] Chen Y C, Salter P S, Knauer S, Weng L, Frangeskou A C, Stephen C J, Ishmael S N, Dolan P R, Johnson S, Green B L, Morley G W, Newton M E, Rarity J G, Booth M J and Smith J M 2017 Nature Photon. 11 77
[36] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[37] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[38] Bian K, Zheng W, Zeng X, Chen X, Stöhr R, Denisenko A, Yang S, Wrachtrup J and Jiang Y 2021 Nat. Commun. 12 2457
[39] Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nature 500 54
[40] Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L and Prawer S 2014 Phys. Rev. Lett. 112 047601
[41] Hilberer A, Toraille L, Dailledouze C, Adam M P, Hanlon L, Weck G, Schmidt M, Loubeyre P and Roch J F 2023 Phys. Rev. B 107 L220102
[42] Ivády V, Simon T, Maze J R, Abrikosov I A and Gali A 2014 Phys. Rev. B 90 235205
[43] Yang X, Dong L, Shan C, Sun J, Zhang N, Wang S, Jiang M, Li B, Xie X and Shen D 2017 Adv. Mater. 29 1602832
[44] Mitra S S, Brafman O, DanielsWB and Crawford R K 1969 Phys. Rev. 186 942
[45] Lv C, Yang X, Wu Y, Lei F, Liang Y, Yang D, Sui L, Qin J, Wu Q, Lai S, Liu H, Zang J, Cheng S, Liu K and Shan C 2025 Nat. Commun. 16 1913
[46] Decremps F, Pellicer-Porres J, Saitta A M, Chervin J C and Polian A 2002 Phys. Rev. B 65 092101
[1] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[2] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[3] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[4] Pressure-induced metallization and Lifshitz transition in quasi-one-dimensional TiSe3 single crystal
Zhenhai Yu(于振海), Yunguan Ye(叶运观), Pengtao Yang(杨芃焘), Yiming Wang(王弈铭), Liucheng Chen(陈刘城), Chenglin Li(李承霖), Jian Yuan(袁健), Ziyi Liu(刘子儀), Zhiwei Shen(申志伟), Shaojie Wang(王邵杰), Mingtao Li(李明涛), Chaoyang Chu(楚朝阳), Xia Wang(王霞), Jun Li(李俊), Lin Wang(王霖), Wenge Yang(杨文革), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2025, 34(8): 088102.
[5] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
[6] Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model
Zhongshan Su(苏中山), Yuan Jiang(江源), Gaoke Hu(胡高科), Yue-Hua Su(苏跃华), Liangsheng Li(李粮生), Wen-Long You(尤文龙), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2025, 34(8): 086401.
[7] Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures
Jun Shan(单俊), Lichuan Zhang(张礼川), Huasu Fu(付华宿), Yuee Xie(谢月娥), Yuriy Mokrousov, and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(8): 087501.
[8] Piezo-phototronic effect on intersubband optical absorption in ZnO/MgZnO quantum wells
Yuchang Liu(刘羽畅), Jiuzhou Chen(陈九州), Yonglong Yang(杨永龙), Xiaolong Pan(潘小龙), Xin Xue(薛鑫), Minjiang Dan(但敏江), Zhengwei Xiong(熊政伟), and Zhipeng Gao(高志鹏). Chin. Phys. B, 2025, 34(8): 087802.
[9] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[10] Random flux manipulating topological phase transitions in Chern insulators
Jinkun Wang(王锦坤) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2025, 34(6): 067301.
[11] Morphology-tuned phase transition of MnO2 nanorods under high pressure
Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军). Chin. Phys. B, 2025, 34(6): 066105.
[12] High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state
Shengjie Liu(刘胜杰), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Jie Zhang(张杰), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Maocai Pi(皮茂材), Zhiwei Hu(胡志伟), Chien-Te Chen(陈建德), Ting-Shan Chan(詹丁山), Cheng Dong(董成), Tian Cui(崔田), Yanping Huang(黄艳萍), Zhenhua Chi(迟振华), Yao Shen(沈瑶), and Youwen Long(龙有文). Chin. Phys. B, 2025, 34(6): 066202.
[13] Iron nitrides: High-pressure synthesis, nitrogen disordering and local magnetic moment
Yu Tao(陶雨) and Li Lei(雷力). Chin. Phys. B, 2025, 34(6): 068301.
[14] Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance
Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊). Chin. Phys. B, 2025, 34(5): 057104.
[15] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
No Suggested Reading articles found!