Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116801    DOI: 10.1088/1674-1056/ad7aff
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Physics through the microscope

Stephen J. Pennycook1,2,†, Ryo Ishikawa3, Haijun Wu(武海军)4, Xiaoxu Zhao(赵晓续)5, Changjian Li(黎长建)6, Duane Loh7,8, Jiadong Dan7,8, and Wu Zhou(周武)1
1 School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
2 Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA;
3 Institute of Engineering Innovation, University of Tokyo, Tokyo 113-8656, Japan;
4 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China;
5 School of Materials Science and Engineering, Peking University, Beijing 100871, China;
6 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
7 Department of Physics, National University of Singapore, Singapore 117551, Singapore;
8 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
Abstract  The electron microscope provides numerous insights into physics, from demonstrations of fundamental quantum mechanical principles to the physics of imaging and materials. It reveals the atomic and electronic structure of key regions such as defects and interfaces. We can learn the underlying physics governing properties, and gain insight into how to synthesize new materials with improved properties. Some recent advances and possible future directions are discussed.
Keywords:  scanning transmission electron microscopy      materials science      point defects      artificial intelligence  
Received:  27 July 2024      Revised:  09 September 2024      Accepted manuscript online:  14 September 2024
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  87.64.Ee (Electron microscopy)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  47.54.Jk (Materials science applications)  
Corresponding Authors:  Stephen J. Pennycook     E-mail:  stevepennycook@gmail.com

Cite this article: 

Stephen J. Pennycook, Ryo Ishikawa, Haijun Wu(武海军), Xiaoxu Zhao(赵晓续), Changjian Li(黎长建), Duane Loh, Jiadong Dan, and Wu Zhou(周武) Physics through the microscope 2024 Chin. Phys. B 33 116801

[1] Batelaan H and Tonomura A 2009 Phys. Today 62 38
[2] Merli P G, Missiroli G F and Pozzi G 1976 Am. J. Phys. 44 306
[3] Tonomura A, Endo J, Matsuda T, Kawasaki T and Ezawa H 1989 Am. J. Phys. 57 117
[4] Rayleigh L 1896 Phil. Mag. 42 167
[5] Pennycook S J 2012 Ultramicroscopy 123 28
[6] Pennycook S J 2012 MRS Bulletin 37 943
[7] Pennycook S J 2017 Ultramicroscopy 180 22
[8] Cowley J 1969 Appl. Phys. Lett. 15 58
[9] Zeitler E and Thomson M 1970 Optik 31 258
[10] Glauber R and Schomaker V 1953 Phys. Rev. 89 667
[11] Oxley M P, Lupini A R and Pennycook S J 2016 Rep. Prog. Phys. 80 026101
[12] Peng Y, Oxley M P, Lupini A R, Chisholm M F and Pennycook S J 2008 Microsc. Microanal. 14 36
[13] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Yamamoto T and Ikuhara Y 2009 Appl. Phys. Lett. 95 191913
[14] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y and Ikuhara Y 2010 Ultramicroscopy 110 903
[15] Knoll M and Ruska E 1932 Zeit. Physik 78 318
[16] von Ardenne M 1938 Zeit. Physik 109 553
[17] Crewe A V 1966 Science 154 729
[18] Crewe A V, Eggenberger D N, Wall J and Welter L M 1968 Rev. Sci. Instrum. 39 576
[19] Pennycook S J 2011 Scanning Transmission Electron Microscopy (Pennycook S J & Nellist P D, Ed.) pp. 1-90 (Springer New York)
[20] Cowley J M 1984 Bull. Mater. Sci. 6 477
[21] Pennycook S J and Jesson D E 1990 Phys. Rev. Lett. 64 938
[22] Pennycook S J, Browning N D, McGibbon M M, McGibbon A J, Jesson D E and Chisholm M F 1996 Phil. Trans. Roy. Soc. A 354 2619
[23] Yan Y and Pennycook S J 2000 Nature 403 266
[24] McGibbon A J, Pennycook S J and Angelo J 1995 Science 269 519
[25] Nellist P D and Pennycook S J 1996 Science 274 413
[26] Yan Y, Chisholm M F, Duscher G, Maiti A, Pennycook S J and Pantelides S T 1998 Phys. Rev. Lett. 81 3675
[27] Browning N D, Chisholm M F and Pennycook S J 1993 Nature 366 143
[28] Batson P E, Dellby N and Krivanek O L 2002 Nature 418 617
[29] Nellist P D, Chisholm M F, Dellby N, Krivanek O L, Murfitt M F, Szilagyi Z S, Lupini A R, Borisevich A, Sides W H and Pennycook S J 2004 Science 305 1741
[30] Varela M, Findlay S D, Lupini A R, Christen H M, Borisevich A Y, Dellby N, Krivanek O L, Nellist P D, Oxley M P, Allen L J and Pennycook S J 2004 Phys. Rev. Lett. 92 095502
[31] Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C, Szilagyi Z S, Oxley M P, Pantelides S T and Pennycook S J 2010 Nature 464 571
[32] Zhou W, Kapetanakis M D, Prange M P, Pantelides S T, Pennycook S J and Idrobo J C 2012 Phys. Rev. Lett. 109 206803
[33] Ishikawa R, Mishra R, Lupini A R, Findlay S D, Taniguchi T, Pantelides S T and Pennycook S J 2014 Phys. Rev. Lett. 113 155501
[34] Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M, Pennycook S J and Yan Y 2014 Phys. Rev. Lett. 112 156103
[35] Wu H, Zhang Y, Wu J, Wang J and Pennycook S J 2019 Adv. Funct. Mater. 29 1902911
[36] Liu H, Wu H, Ong K P, Yang T, Yang P, Das P K, Chi X, Zhang Y, Diao C, Wong W K A, Chew E P, Chen Y F, Tan C K I, Rusydi A, Breese M B H, Singh D J, Chen L Q, Pennycook S J and Yao K 2020 Science 369 292
[37] Waqar M, Wu H, Ong K P, Liu H, Li C, Yang P, Zang W, Liew W H, Diao C, Xi S, Singh D J, He Q, Yao K, Pennycook S J and Wang J 2022 Nat. Commun. 13 3922
[38] Zhao X, Ning S, Fu W, Pennycook S J and Loh K P 2018 Adv. Mater. 30 1802397
[39] Zhao X, Song P, Wang C, Riis-Jensen A C, Fu W, Deng Y, Wan D, Kang L, Ning S, Dan J, Venkatesan T, Liu Z, Zhou W, Thygesen K S, Luo X, Pennycook S J and Loh K P 2020 Nature 581 171
[40] Tian H, Ma Y, Li Z, Cheng M, Ning S, Han E, Xu M, Zhang P F, Zhao K, Li R, Zou Y, Liao P, Yu S, Li X, Wang J, Liu S, Li Y, Huang X, Yao Z, Ding D, Guo J, Huang Y, Lu J, Han Y, Wang Z, Cheng Z G, Liu J, Xu Z, Liu K, Gao P, Jiang Y, Lin L, Zhao X, Wang L, Bai X, Fu W, Wang J Y, Li M, Lei T, Zhang Y, Hou Y, Pei J, Pennycook S J, Wang E, Chen J, Zhou W and Liu L 2023 Nature 615 56
[41] Zhao X, Dan J, Chen J, Ding Z, Zhou W, Loh K P and Pennycook S J 2018 Adv. Mater. 30 1707281
[42] Shibata N, Findlay S D, Kohno Y, Sawada H, Kondo Y and Ikuhara Y 2012 Nat. Phys. 8 611
[43] Shibata N, Seki T, Sanchez-Santolino G, Findlay S D, Kohno Y, Matsumoto T, Ishikawa R and Ikuhara Y 2017 Nat. Commun. 8 15631
[44] Yang H, Rutte R N, Jones L, Simson M, Sagawa R, Ryll H, Huth M, Pennycook T J, Green M L H, Soltau H, Kondo Y, Davis B G and Nellist P D 2016 Nat. Commun. 7 12532
[45] Pennycook T J, Lupini A R, Yang H, Murfitt M F, Jones L and Nellist P D 2015 Ultramicroscopy 151 160
[46] Yang H, Pennycook T J and Nellist P D 2015 Ultramicroscopy 151 232
[47] Gao C, Hofer C, Jannis D, Béché A, Verbeeck J and Pennycook T J 2022 Appl. Phys. Lett. 121 081906
[48] Jannis D, Hofer C, Gao C, Xie X, Béché A, Pennycook T J and Ver-beeck J 2022 Ultramicroscopy 233 113423
[49] Jiang Y, Chen Z, Han Y, Deb P, Gao H, Xie S, Purohit P, Tate M W, Park J, Gruner S M, Elser V and Muller D A 2018 Nature 559 343
[50] Sha H, Cui J and Yu R 2022 Sci. Adv. 8 eabn2275
[51] Sha H, Ma Y, Cao G, Cui J, Yang W, Li Q and Yu R 2023 Nat. Commun. 14 162
[52] Ishikawa R, Pennycook S J, Lupini A R, Findlay S D, Shibata N and Ikuhara Y 2016 Appl. Phys. Lett. 109 163102
[53] Chung J Y, Li Z, Goodman S A, So J, Syaranamual G J, Mishra T P, Fitzgerald E A, Bosman M, Lee K, Pennycook S J and Gradečak S 2021 ACS Photon. 8 2853
[54] Li M, Chen P, Zhang Y, Zhang Y, Liu Z, Tang C, Chung J Y, Gu M, Li J, Huang Z, Chow G M, Li C and Pennycook S J 2023 Small 19 2203201
[55] Ishikawa R, Lupini A R, Hinuma Y and Pennycook S J 2015 Ultramicroscopy 151 122
[56] He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y J, Dong J F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J M, Zhu Y, Xu W, Niu C, Wang G, Liu C, Ohta M, Pennycook S J, He J, Li J F and Zhao L D 2019 Science 365 1418
[57] Jiang B, Yu Y, Cui J, Liu X, Xie L, Liao J, Zhang Q, Huang Y, Ning S, Jia B, Zhu B, Bai S, Chen L, Pennycook S J and He J 2021 Science 371 830
[58] Idrobo J C, Lupini A R, Feng T, Unocic R R, Walden F S, Gardiner D S, Lovejoy T C, Dellby N, Pantelides S T and Krivanek O L 2018 Phys. Rev. Lett. 120 095901
[59] Yu Y, Xie L, Pennycook S J, Bosman M and He J 2022 Sci. Adv. 8 eadd7690
[60] Hudak B M, Song J, Sims H, Troparevsky M C, Humble T S, Pantelides S T, Snijders P C and Lupini A R 2018 ACS Nano 12 5873
[61] Dan J, Zhao X, Ning S, Lu J, Loh K P, He Q, Loh N D and Pennycook S J 2022 Sci. Adv. 8 eabk1005
[1] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[2] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[3] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[4] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[5] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[6] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[7] Literature classification and its applications in condensed matter physics and materials science by natural language processing
Siyuan Wu(吴思远), Tiannian Zhu(朱天念), Sijia Tu(涂思佳), Ruijuan Xiao(肖睿娟), Jie Yuan(袁洁), Quansheng Wu(吴泉生), Hong Li(李泓), and Hongming Weng(翁红明). Chin. Phys. B, 2024, 33(5): 050704.
[8] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[9] Advances in neuromorphic computing: Expanding horizons for AI development through novel artificial neurons and in-sensor computing
Yubo Yang(杨玉波), Jizhe Zhao(赵吉哲), Yinjie Liu(刘胤洁), Xiayang Hua(华夏扬), Tianrui Wang(王天睿), Jiyuan Zheng(郑纪元), Zhibiao Hao(郝智彪), Bing Xiong(熊兵), Changzheng Sun(孙长征), Yanjun Han(韩彦军), Jian Wang(王健), Hongtao Li(李洪涛), Lai Wang(汪莱), and Yi Luo(罗毅). Chin. Phys. B, 2024, 33(3): 030702.
[10] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[11] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[12] MatChat: A large language model and application service platform for materials science
Zi-Yi Chen(陈子逸), Fan-Kai Xie(谢帆恺), Meng Wan(万萌), Yang Yuan(袁扬), Miao Liu(刘淼), Zong-Guo Wang(王宗国), Sheng Meng(孟胜), and Yan-Gang Wang(王彦棡). Chin. Phys. B, 2023, 32(11): 118104.
[13] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
No Suggested Reading articles found!