Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087801    DOI: 10.1088/1674-1056/add679
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Pressure dependent excited state dynamics behavior in CzCNDSB

Guang-Jing Hou(侯广静)1, Ting-Ting Wang(王亭亭)1, Cun-Fang Feng(冯存方)2, Hong-Yu Tu(屠宏宇)1, Yu Zhang(张宇)1, Fang-Fei Li(李芳菲)1, Ying-Hui Wang(王英惠)1, Ping Lu(路萍)3,†, Tian Cui(崔田)4,‡, and Ling-Yun Pan(潘凌云)1,§
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 College of Chemistry, Jilin University, Changchun 130012, China;
3 State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, China;
4 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  High pressure can alter the properties of matter and modulate the excited-state relaxation behavior of materials without chemical intervention. In this study, high pressure was combined with steady-state absorption and fluorescence spectroscopy, as well as transient spectroscopy techniques, to investigate its effect on the optical properties of the stimuli-responsive material (2Z,2$'$Z)-2,2$'$-(1,4-phenylene)bis(3-(4-(9H-carbazol-9-yl)phenyl)acrylonitrile) (CzCNDSB). With increasing pressure, the steady-state absorption and fluorescence peaks of CzCNDSB crystals exhibit red shifts, which are fully reversible. At the same time, pressure causes the molecules to pack more closely, leading to an increase in both the number and energy of multiplet self-trapped state, while the energy of local excited state decreases. The steady-state and transient results provide information on electronic energy levels, excited-state dynamics, and other properties of CzCNDSB, which show strong pressure dependence. These findings highlight the potential of CzCNDSB for practical applications such as photodetectors and solar energy conversion.
Keywords:  high pressure      CzCNDSB      transient absorption      stimuli-response  
Received:  13 March 2025      Revised:  07 May 2025      Accepted manuscript online:  09 May 2025
PACS:  78.47.jb (Transient absorption)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
  62.50.-p (High-pressure effects in solids and liquids)  
  82.53.-k (Femtochemistry)  
Fund: This project was supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305900 and 2017YFA0403704), the National Natural Science Foundation of China (Grant Nos. 61575079, 51632002, 11804113, and 51720105007), and the Natural Science Foundation of Jilin Province, China (Grant No. 20180101230JC).
Corresponding Authors:  Ping Lu, Tian Cui, Ling-Yun Pan     E-mail:  ply@jlu.edu.cn;cuitian@nbu.edu.cn;lup@jlu.edu.cn

Cite this article: 

Guang-Jing Hou(侯广静), Ting-Ting Wang(王亭亭), Cun-Fang Feng(冯存方), Hong-Yu Tu(屠宏宇), Yu Zhang(张宇), Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), Ping Lu(路萍), Tian Cui(崔田), and Ling-Yun Pan(潘凌云) Pressure dependent excited state dynamics behavior in CzCNDSB 2025 Chin. Phys. B 34 087801

[1] Zhu L and Zhao Y 2013 J. Mater. Chem. C 1 1059
[2] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M and Grätzel M 2011 Science 334 629
[3] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222
[4] Mikroyannidis J A, Kabanakis A N, Sharma S S and Sharma G D 2011 Adv. Funct. Mater. 21 746
[5] Hsu C W, Lin C C, Chung M W, Chi Y, Lee G H, Chou P T, Chang C H and Chen P Y 2011 J. Am. Chem. Soc. 133 12085
[6] Zuniga C A, Barlow S and Marder S R 2011 Chem. Mater. 23 658
[7] Komori T, Nakanotani H, Yasuda T and Adachi C 2014 J. Mater. Chem. C 2 4918
[8] Pauchard M, Swensen J, Moses D, Heeger A J, Perzon E and Andersson M R 2003 J. Appl. Phys. 94 3543
[9] Delaire J A and Nakatani K 2000 Chem. Rev. 100 1817
[10] Lv J, Yin X, Zheng H, Li Y, Li Y and Zhu D 2011 Luminescence 26 185
[11] Yen H J, Lin H Y and Liou G S 2011 Chem. Mater. 23 1874
[12] Gentili P L, Nocchetti M, Miliani C and Favaro G 2004 New J. Chem. 28 379
[13] Zheng C, Pu S, Liu G and Chen B 2013 Tetrahedron Lett. 54 7024
[14] Yoon S J and Park S 2011 J. Mater. Chem. 21 8338
[15] Bock H, Göbel I, Näther C, Havlas Z, Gavezzotti A and Filippini G 1993 Angew. Chem. 105 1823
[16] Domenicano A and Vaciago A 1979 Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 35 1382
[17] Grabowski Z R, Rotkiewicz K and Rettig W 2003 Chem. Rev. 103 3899
[18] Li T, Wang S, Chen X, Chen C, Fang Y and Yang Z 2024 Chin. Phys. B 33 066401
[19] Jiang S, Zhang J, Wang L, Lin C, Yan S, Liu J, Li A and Tai R 2023 AIP Adv. 13 095018
[20] Karaca E and Errandonea D 2023 Results Phys. 50 106581
[21] Liu P, Xu M, Lv J, Gao P, Huang C, Li Y, Wang J, Wang Y and Zhou M 2022 Chin. Phys. B 31 106104
[22] Wang Y, Wang K, Ma Y, Zhou M, Wang H and Liu G 2021 J. Phys.- Condes. Matter 33 355403
[23] Yin X, Zhang J, DongW, Nakagawa T, Xia C, Zhang C, GuoW, Chang J and Ding Y 2023 Chin. Phys. B 33 016103
[24] Löwe C and Weder C 2002 Adv. Mater. 14 1625
[25] Dong Y, Xu B, Zhang J, Tan X, Wang L, Chen J, Lv H, Wen S, Li B, Ye L, Zou B and Tian W 2012 Angew. Chem. 124 10940
[26] Gautam P, Yu C P, Zhang G, Hillier V E and Chan J M W 2017 J. Org. Chem. 82 11008
[27] Feng C, Wang K, Xu Y, Liu L, Zou B and Lu P 2016 Chem. Commun. 52 3836
[28] Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S A T and Zou B 2018 Nat. Commun. 9 4506
[29] Shi Y, Ma Z, Zhao D, Chen Y, Cao Y,Wang K, Xiao G and Zou B 2019 J. Am. Chem. Soc. 141 6504
[30] Fang Y, Zhang L, Wu L, Yan J, Lin Y, Wang K, Mao W L and Zou B 2019 Angew. Chem.-Int. Edit. 58 15249
[31] Zhu C, Li C,Wen L, Song Q,Wang K, Lv C and Zhang Y 2021 New J. Chem. 45 12895
[32] Furube A, Murai M, Tamaki Y, Watanabe S and Katoh R 2006 J. Phys. Chem. A 110 6465
[33] Wang T T, Zhang Y, Tu H Y, Han L, Cheng J C, Wang X, Li F F, Pan L Y and Cui T 2021 Chin. Phys. B 30 118201
[34] Matsui A, Ohno T, Mizuno K I, Yokoyama T and Kobayashi M 1987 Chem. Phys. 111 121
[35] Xiao L P, Yang X and Zeng L 2018 Mol. Simul. 44 330
[1] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[2] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[3] Magnetotransport properties of two-dimensional tellurium at high pressure
Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙). Chin. Phys. B, 2025, 34(8): 087301.
[4] High pressure synthesis, crystal structure and electronic properties of Ba3Hf(Se1-xTex)5 (x = 0-1)
Zelong Wang(王泽龙), Guodong Wang(王国东), Wenmin Li(李文敏), Runteng Chen(陈润滕), Lei Duan(段磊), Jianfa Zhao(赵建发), Zheng Deng(邓正), Jianfeng Zhang(张建丰), Tingjiang Yan(颜廷江), Jun Zhang(张俊), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086101.
[5] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[6] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[7] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[8] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[9] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[10] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[11] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[12] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[13] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[14] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[15] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
No Suggested Reading articles found!