Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 056802    DOI: 10.1088/1674-1056/adbee8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface solitonic charge distribution on 2D materials investigated using Kelvin probe force microscopy technique based on qplus atomic force microscopy

Rui Song(宋睿)2, Feng Hao(郝峰)2, Jie Yang(杨杰)2, Lifeng Yin(殷立峰)1,2,3,4,†, and Jian Shen(沈健)1,2,3,4,‡
1 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China;
2 State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200438, China;
3 Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China;
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  Recently, charged solitons have been found in a two-dimensional CoCl2/HOPG system, whose microscopic nature remains to be elusive. In this work, we investigate the charged solitons in monolayer CoCl2 using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Moreover, we study the electrical properties of the charged solitons at zero electric field by measuring local contact potential difference (LCPD) via Kelvin probe force microscopy (KPFM) using the Δf(V) method. The compensation voltage corresponding to the vertex of the parabola is obtained by fitting the quadratic relationship between Δf and sample bias. The results show that, without an external electric field, the solitons behave as negatively charged entities. Meanwhile, the LCPD mapping characterizes the spatial distribution of the potential at the charged solitons, which agrees well with those obtained from STM band bending measurements.
Keywords:  scanning tunneling microscopy (STM)      atomic force microscopy (AFM)      Kelvin probe force microscopy (KPFM)      cobalt dichloride  
Received:  22 January 2025      Revised:  27 February 2025      Accepted manuscript online:  11 March 2025
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.37.Ps (Atomic force microscopy (AFM))  
  07.79.Cz (Scanning tunneling microscopes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403300 and 2019YFA0308404), the National Natural Science Foundation of China (Grant Nos. 11427902, 11991060, 12074075, 12474165, 12274084, and 12241402), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), Shanghai Municipal Natural Science Foundation (Grant No. 22ZR1407400), Innovation Program for Quantum Science and Technology (Grant No. 2024ZD0300104), Innovation Program of Shanghai Municipal Education Commission (Grant No. 2023ZKZD03), Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1415900), and China Postdoctoral Science Foundation (Grant No. KLH1512149).
Corresponding Authors:  Lifeng Yin, Jian Shen     E-mail:  lifengyin@fudan.edu.cn;shenj5494@fudan.edu.cn

Cite this article: 

Rui Song(宋睿), Feng Hao(郝峰), Jie Yang(杨杰), Lifeng Yin(殷立峰), and Jian Shen(沈健) Surface solitonic charge distribution on 2D materials investigated using Kelvin probe force microscopy technique based on qplus atomic force microscopy 2025 Chin. Phys. B 34 056802

[1] Liu H, Wang A, Zhang P, Ma C, Chen C, Liu Z, Zhang Y Q, Feng B, Cheng P, Zhao J, Chen L and Wu K 2023 Nat. Commun. 14 3690
[2] Cai M, Miao M P, Liang Y, Jiang Z, Liu Z Y, Zhang W H, Liao X, Zhu L F, West D, Zhang S and Fu Y S 2023 Nat. Commun. 14 3691
[3] Hao F, Song R, Yang J, Shen J, Ernst A, Yin L, Wang Z and Gao C 2024 Nano Lett. 24 14042
[4] Zhu Z, Chang T R, Huang C Y, Pan H, Nie X A, Wang X Z, Jin Z T, Xu S Y, Huang S M, Guan D D, Wang S, Li Y Y, Liu C, Qian D, Ku W, Song F, Lin H, Zheng H and Jia J F 2018 Nat. Commun. 9 4153
[5] Crommie M F, Lutz C P and Eigler D M 1993 Nature 363 524
[6] Rutter G M, Crain J N, Guisinger N P, Li T, First P N and Stroscio J A 2007 Science 317 219
[7] Garnica M, Otrokov M M, Aguilar P C, Klimovskikh I I, Estyunin D, Aliev Z S, Amiraslanov I R, Abdullayev N A, Zverev V N, Babanly M B, Mamedov N T, Shikin A M, Arnau A, de Parga A L V, Chulkov E V and Miranda R 2022 npj Quantum Materials 7 7
[8] Sutter-Fella C M, Miller D W, Ngo Q P, Roe E T, Toma F M, Sharp I D, Lonergan M C and Javey A 2017 ACS Energy Letters 2 709
[9] Melitz W, Shen J, Kummel A C and Lee S 2011 Surface Science Reports 66 1
[10] Mohn F, Gross L, Moll N and Meyer G 2012 Nat. Nanotechnol. 7 227
[11] Gross L, Mohn F, Moll N, Liljeroth P and Meyer T 2009 Science 325 1110
[12] Huang L, Kong X, Zheng Q, Xing Y, Chen H, Li Y, Hu Z, Zhu S, Qiao J, Zhang Y Y, Cheng H, Cheng Z, Qiu X, Liu E, Lei H, Lin X, Wang Z, Yang H, Ji W and Gao H J 2023 Nat. Commun. 14 5230
[13] Chen P, Fan D, Selloni A, Carter E A, Arnold C B, Zhang Y, Gross A S, Chelikowsky J R and Yao N 2023 Nat. Commun. 14 1460
[14] Albrecht F, Repp J, Fleischmann M, Scheer M, OndráčekMand Jelínek P 2015 Phys. Rev. Lett. 115 076101
[15] Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y and Wee A S T 2023 Nature 617 67
[16] Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J and Meyer G 2009 Science 324 1428
[17] Li H, Wang G B, Yang J Y, Zhang Z S, Deng J and Du S X 2023 Chin. Phys. Lett. 40 128101
[18] Luo Y, Su W T, Zhang J J, Chen F, Wu K, Zeng Y J and Lu H W 2023 Chin. Phys. B 32 117801
[19] Sugimoto Y, Pou P, Abe M, Jelinek P, Pérez R, Morita S and Custance Ó 2007 Nature 446 64
[20] Sugimoto Y, Pou P, Custance Ó, Jelinek P, Morita S, Peŕez R and Abe M 2006 Phys. Rev. B 73 205329
[21] Morse P M 1929 Phys. Rev. 34 57
[22] Sugimoto Y, Namikawa T, Abe M and Morita S 2009 Appl. Phys. Lett. 94 023108
[23] Ichii T, Fukuma T, Yoda T, Kobayashi L, Matsushige K and Yamada H 2010 J. Appl. Phys. 107 024315
[24] Yuan B, Chen P, Zhang J, Cheng Z, Qiu X and Wang C 2013 Chinese Science Bulletin 58 3630
[25] Krull C, Castelli M, Hapala P, Kumar D, Tadich A, Capsoni M, Edmonds M T, Hellerstedt K, Burke S A, Jelinek P and Schiffrin A 2018 Nat. Commun. 9 3211
[26] Wang Y S, Li X, Yang Q X, Shen Q, He Y, Zhang Y J and Wang Y F 2023 Fundamental Research
[27] Telychko M, Edalatmanesh S, Leng K, Abdelwahab I, Guo N, Zhang C, Mendieta-Moreno J I, Nachtigall M, Li J, Loh K P, Jelínek P and Lu J 2022 Sci. Adv. 8 eabj0395
[28] Ikeda M, Koide N, Han L, Sasahara A and Onishi H 2008 The Journal of Physical Chemistry C 112 6961
[29] Schuler B, Liu S X, Geng Y, Decurtins S, Meyer G and Gross L 2014 Nano Lett. 14 3342
[30] Castenmiller C, van Bremen R, Sotthewes K, Siekman M H and Zandvliet H J W 2018 AIP Adv. 8 075013
[31] Mishra R and Moheimani S O R 2025 Rev. Sci. Instrum. 96 14
[1] Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology
Zhenyu Yuan(袁震宇), Fazhi Yang(杨发枝), Baiqing Lv(吕佰晴), Yaobo Huang(黄耀波), Tian Qian(钱天), Jinpeng Xu(徐金朋), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(2): 026802.
[2] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[3] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[4] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[5] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[6] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[7] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[8] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[9] Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition
Liu Bo (刘波), Zhang Sen (张森), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Dun Shao-Bo (敦少博), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2013, 22(5): 057105.
[10] Stabilization variation of organic conductor surfaces induced by π-π stacking interactions
Dou Rui-Fen(窦瑞芬), Lin Feng(林峰), Liu Fu-Wei(刘富伟), Sun Yi(孙祎), Yang Ji-Yong(杨继勇), Lin Bing-Fa(林炳发), He Lin(何林), Xiong Chang-Min(熊昌民), and Nie Jia-Cai(聂家财) . Chin. Phys. B, 2012, 21(5): 056801.
No Suggested Reading articles found!