Surface solitonic charge distribution on 2D materials investigated using Kelvin probe force microscopy technique based on qplus atomic force microscopy
Rui Song(宋睿)2, Feng Hao(郝峰)2, Jie Yang(杨杰)2, Lifeng Yin(殷立峰)1,2,3,4,†, and Jian Shen(沈健)1,2,3,4,‡
1 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China; 2 State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200438, China; 3 Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China; 4 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract Recently, charged solitons have been found in a two-dimensional CoCl/HOPG system, whose microscopic nature remains to be elusive. In this work, we investigate the charged solitons in monolayer CoCl using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Moreover, we study the electrical properties of the charged solitons at zero electric field by measuring local contact potential difference (LCPD) via Kelvin probe force microscopy (KPFM) using the method. The compensation voltage corresponding to the vertex of the parabola is obtained by fitting the quadratic relationship between and sample bias. The results show that, without an external electric field, the solitons behave as negatively charged entities. Meanwhile, the LCPD mapping characterizes the spatial distribution of the potential at the charged solitons, which agrees well with those obtained from STM band bending measurements.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403300 and 2019YFA0308404), the National Natural Science Foundation of China (Grant Nos. 11427902, 11991060, 12074075, 12474165, 12274084, and 12241402), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), Shanghai Municipal Natural Science Foundation (Grant No. 22ZR1407400), Innovation Program for Quantum Science and Technology (Grant No. 2024ZD0300104), Innovation Program of Shanghai Municipal Education Commission (Grant No. 2023ZKZD03), Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1415900), and China Postdoctoral Science Foundation (Grant No. KLH1512149).
Rui Song(宋睿), Feng Hao(郝峰), Jie Yang(杨杰), Lifeng Yin(殷立峰), and Jian Shen(沈健) Surface solitonic charge distribution on 2D materials investigated using Kelvin probe force microscopy technique based on qplus atomic force microscopy 2025 Chin. Phys. B 34 056802
[1] Liu H, Wang A, Zhang P, Ma C, Chen C, Liu Z, Zhang Y Q, Feng B, Cheng P, Zhao J, Chen L and Wu K 2023 Nat. Commun. 14 3690 [2] Cai M, Miao M P, Liang Y, Jiang Z, Liu Z Y, Zhang W H, Liao X, Zhu L F, West D, Zhang S and Fu Y S 2023 Nat. Commun. 14 3691 [3] Hao F, Song R, Yang J, Shen J, Ernst A, Yin L, Wang Z and Gao C 2024 Nano Lett. 24 14042 [4] Zhu Z, Chang T R, Huang C Y, Pan H, Nie X A, Wang X Z, Jin Z T, Xu S Y, Huang S M, Guan D D, Wang S, Li Y Y, Liu C, Qian D, Ku W, Song F, Lin H, Zheng H and Jia J F 2018 Nat. Commun. 9 4153 [5] Crommie M F, Lutz C P and Eigler D M 1993 Nature 363 524 [6] Rutter G M, Crain J N, Guisinger N P, Li T, First P N and Stroscio J A 2007 Science 317 219 [7] Garnica M, Otrokov M M, Aguilar P C, Klimovskikh I I, Estyunin D, Aliev Z S, Amiraslanov I R, Abdullayev N A, Zverev V N, Babanly M B, Mamedov N T, Shikin A M, Arnau A, de Parga A L V, Chulkov E V and Miranda R 2022 npj Quantum Materials 7 7 [8] Sutter-Fella C M, Miller D W, Ngo Q P, Roe E T, Toma F M, Sharp I D, Lonergan M C and Javey A 2017 ACS Energy Letters 2 709 [9] Melitz W, Shen J, Kummel A C and Lee S 2011 Surface Science Reports 66 1 [10] Mohn F, Gross L, Moll N and Meyer G 2012 Nat. Nanotechnol. 7 227 [11] Gross L, Mohn F, Moll N, Liljeroth P and Meyer T 2009 Science 325 1110 [12] Huang L, Kong X, Zheng Q, Xing Y, Chen H, Li Y, Hu Z, Zhu S, Qiao J, Zhang Y Y, Cheng H, Cheng Z, Qiu X, Liu E, Lei H, Lin X, Wang Z, Yang H, Ji W and Gao H J 2023 Nat. Commun. 14 5230 [13] Chen P, Fan D, Selloni A, Carter E A, Arnold C B, Zhang Y, Gross A S, Chelikowsky J R and Yao N 2023 Nat. Commun. 14 1460 [14] Albrecht F, Repp J, Fleischmann M, Scheer M, OndráčekMand Jelínek P 2015 Phys. Rev. Lett. 115 076101 [15] Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y and Wee A S T 2023 Nature 617 67 [16] Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J and Meyer G 2009 Science 324 1428 [17] Li H, Wang G B, Yang J Y, Zhang Z S, Deng J and Du S X 2023 Chin. Phys. Lett. 40 128101 [18] Luo Y, Su W T, Zhang J J, Chen F, Wu K, Zeng Y J and Lu H W 2023 Chin. Phys. B 32 117801 [19] Sugimoto Y, Pou P, Abe M, Jelinek P, Pérez R, Morita S and Custance Ó 2007 Nature 446 64 [20] Sugimoto Y, Pou P, Custance Ó, Jelinek P, Morita S, Peŕez R and Abe M 2006 Phys. Rev. B 73 205329 [21] Morse P M 1929 Phys. Rev. 34 57 [22] Sugimoto Y, Namikawa T, Abe M and Morita S 2009 Appl. Phys. Lett. 94 023108 [23] Ichii T, Fukuma T, Yoda T, Kobayashi L, Matsushige K and Yamada H 2010 J. Appl. Phys. 107 024315 [24] Yuan B, Chen P, Zhang J, Cheng Z, Qiu X and Wang C 2013 Chinese Science Bulletin 58 3630 [25] Krull C, Castelli M, Hapala P, Kumar D, Tadich A, Capsoni M, Edmonds M T, Hellerstedt K, Burke S A, Jelinek P and Schiffrin A 2018 Nat. Commun. 9 3211 [26] Wang Y S, Li X, Yang Q X, Shen Q, He Y, Zhang Y J and Wang Y F 2023 Fundamental Research [27] Telychko M, Edalatmanesh S, Leng K, Abdelwahab I, Guo N, Zhang C, Mendieta-Moreno J I, Nachtigall M, Li J, Loh K P, Jelínek P and Lu J 2022 Sci. Adv. 8 eabj0395 [28] Ikeda M, Koide N, Han L, Sasahara A and Onishi H 2008 The Journal of Physical Chemistry C 112 6961 [29] Schuler B, Liu S X, Geng Y, Decurtins S, Meyer G and Gross L 2014 Nano Lett. 14 3342 [30] Castenmiller C, van Bremen R, Sotthewes K, Siekman M H and Zandvliet H J W 2018 AIP Adv. 8 075013 [31] Mishra R and Moheimani S O R 2025 Rev. Sci. Instrum. 96 14
Epitaxial fabrication of monolayer copper arsenide on Cu(111) Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
Epitaxial growth and air-stability of monolayer Cu2Te K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.