Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050506    DOI: 10.1088/1674-1056/ad2508
GENERAL Prev   Next  

Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system

Jin-Song Huang(黄劲松)1,†, Hong-Wu Huang(黄红武)1, Yan-Ling Li(李艳玲)1, and Zhong-Hui Xu(徐中辉)2
1 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2 Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract  We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system. Using the real-space Hamiltonian, analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles. Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference. High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range, and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms. This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.
Keywords:  quantum transport      quantum entanglement      scattering theory      optical waveguide  
Received:  20 December 2023      Revised:  30 January 2024      Accepted manuscript online:  02 February 2024
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  89.20.Hh (World Wide Web, Internet)  
  06.30.Ft (Time and frequency)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12365003, 12364024, and 11864014) and the Jiangxi Provincial Natural Science Foundation (Grant Nos. 20212BAB201014 and 20224BAB201023).
Corresponding Authors:  Jin-Song Huang,E-mail:jshuangjs@126.com     E-mail:  jshuangjs@126.com

Cite this article: 

Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉) Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system 2024 Chin. Phys. B 33 050506

[1] Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001
[2] Shen J T and Fan S 2009 Phys. Rev. A 79 023837
[3] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[4] Goban A, Hung C L, Yu S P, Hood J D, Muniz J A, Lee J H, Martin M J, McClung A C, Choi K S, Chang D E, Painter O and Kimble H J 2014 Nat. Commun. 5 3808
[5] Chen G Y, Liu M H and Chen Y N 2014 Phys. Rev. A 89 053802
[6] Mukhopadhyay D and Agarwal G S 2019 Phys. Rev. A 100 013812
[7] Mukhopadhyay D and Agarwal G S 2020 Phys. Rev. A 101 063814
[8] Shu Y X, Ma X S, Huang X S, Cheng M T and Han J B 2021 Chin. Phys. B 30 104204
[9] Mukhopadhyay D and Agarwal G S 2020 Phys. Rev. A 101 063814
[10] Zheng H X and Baranger H U 2013 Phys. Rev. Lett. 110 113601
[11] Jia W Z and Cai Q Y 2022 Eur. Phys. J. Plus 137 1082
[12] Zheng H X and Baranger H U 2013 Phys. Rev. Lett. 110 113601
[13] Gonzalez-Ballestero C, Moreno E and Garcia-Vidal F J 2014 Phys. Rev. A 89 042328
[14] Facchi P, Kim M S, Pascazio S, Pepe F V, Pomarico D and Tufarelli T 2016 Phys. Rev. A 94 043839
[15] Liu A P, Cheng L Y, Guo Q, Su S L, Wang H F and Zhang S 2022 Chin. Phys. B 31 080307
[16] Zhang X Q, Xia X W, Xu J P, Li H Z and Fu Z Y 2022 Chin. Phys. B 31 074204
[17] Chen M Y, Tang J S, Tang L, Wu H D and Xia K Y 2022 Phys. Rev. Res. 4 033083
[18] Feng L J, Yan L and Gong S Q 2023 Front. Phys. 18 12304
[19] Sun J Y and Shen H Z 2023 Phys. Rev. A 107 043715
[20] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604
[21] Liu A P, Cheng L Y, Guo Q, Su S L, Wang H F and Zhang S 2019 Chin. Phys. B 28 020301
[22] Zhang J H, He D Y, Luo G Y, Wang B D and Huang J S 2021 Chin. Phys. B 30 034204
[23] Liu J S, Yang Y, Lu J and Zhou L 2022 Chin. Phys. B 31 110301
[24] Jia W Z, Wang Y W and Liu Y X 2017 Phys. Rev. A 96 053832
[25] Cao M S and Jia W Z 2021 J. Phys. B 54 055502
[26] Ai Q and Liao J Q 2010 Commun. Theor. Phys. 54 985
[27] Ahumada M, Orellana P A and Retamal J C 2018 Phys. Rev. A 98 023827
[28] Talukdar J and Blume D 2018 Phys. Rev. A 108 023702
[29] Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumüller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S and Oliver W D 2020 Nature 583 7818
[30] Feng S L and Jia W Z 2021 Phys. Rev. A 104 063712
[31] Peng Y P and Jia W Z 2023 Phys. Rev. A 108 043709
[32] Liu J Y, Jin J W, Liu H Y, Ming Y and Yang R C 2023 Quantum Inf. Process. 22 74
[33] Liu N, Wang X, Wang X, Ma X S and Cheng M T 2022 Opt. Express 30 23428
[34] Chen Y T, Du L, Guo L Z, Wang Z H, Zhang Y, Li Y and Wu J H 2022 Commun. Phys. 5 215
[35] Wang X, Yang W X, Chen A X, Li L, Shui T, Li X Y and Wu Z 2022 Quantum Sci. Technol. 7 015025
[36] Zhao W, Zhang Y and Wang Z H 2022 Front. Phys. 17 42506
[37] Du L, Zhang Y and Li Y 2022 Front. Phys. 18 12301
[38] Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H and Xu H X 2018 Chem. Rev. 118 2882
[39] Guo X, Ma Y G, Wang Y P and Tong L M 2013 Laser Photon. Rev. 7 855
[40] Li Q, Wei H and Xu H X 2014 Nano Lett. 14 3358
[41] Kuo P C, Chen G Y and Chen Y N 2016 Sci. Rep. 6 37766
[42] Huang J S, Zhang J H, Wang Y, Xu Z H and Huang Y W 2018 Opt. Commun. 419 25
[43] Ryom J S, Kim N C, Ko M C and Choe S I 2022 Plasmonics 17 949
[1] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[2] Electrically controllable spin filtering in zigzag phosphorene nanoribbon based normal—antiferromagnet—normal junctions
Ruigang Li(李锐岗), Jun-Feng Liu(刘军丰), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017304.
[3] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[4] Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires
Guang-Yu Zhu(祝光宇), Ji-Ai Ning(宁纪爱), Jian-Kun Wang(王建坤), Xin-Jie Liu(刘心洁), Jia-Jie Yang(杨佳洁), Ben-Chuan Lin(林本川), and Shuo Wang(王硕). Chin. Phys. B, 2024, 33(1): 017305.
[5] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[6] Compact TE-pass polarizer based on lithium-niobate-on-insulator assisted by indium tin oxide and silicon nitride
Jia-Min Liu(刘家敏) and De-Long Zhang(张德龙). Chin. Phys. B, 2023, 32(6): 064208.
[7] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[8] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[9] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[10] Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳). Chin. Phys. B, 2023, 32(10): 100302.
[11] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[12] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[13] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[14] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[15] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
No Suggested Reading articles found!