Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077402    DOI: 10.1088/1674-1056/adcdec
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fabrication and characterization of MgB2 spherical shells with reduced thickness on 1 mm diameter Si3N4 spheres

Ruining Sun(孙瑞宁)1, Tiequan Xu(徐铁权)1,2, Yue Wang(王越)1,†, Furen Wang(王福仁)1, and Zizhao Gan(甘子钊)1
1 Applied Superconductivity Center, State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2 Beijing National Laboratory for Molecular Sciences, Huairou Research Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Magnetic levitation of the fusion target by coating a thin MgB$_2$ superconducting shell on its outer surface has recently been proposed in inertial confinement fusion (ICF) to realize a noncontact support of the target at $\sim20$ K to boost the implosion performance and fusion yield. To avoid possible effects on target ablation, the coated MgB$_2$ shell is anticipated to be as thin as possible while fulfilling the target levitation requirements. Under this circumstance, the fabrication of an MgB$_2$ shell with reduced thickness has been explored using a hybrid physical-chemical vapour deposition method. By gradually decreasing the deposition time, a set of MgB$_2$ shells were grown on 1 mm diameter Si$_3$N$_4$ spheres with the thickness reducing from 720 nm to 200 nm. The spherical shells all have a polycrystalline structure characterized by closely packed hexagonal grains, with both the grain size and thickness diminishing as the shell thickness decreases. The superconducting transition temperature $T_{\rm c}$ of the shells, as determined by both resistance and magnetization measurements, is in the range of $38$-$40$ K and all shells exhibit ideal diamagnetism at low temperatures. For the thinnest shell of 200 nm, the superconducting critical current density $J_{\rm c}$ at 20 K reaches $8.0\times10^6$ A/cm$^2$ and $2.1\times10^5$ A/cm$^2$ under zero and 2 T applied field, respectively. The results indicate that it is experimentally feasible to fabricate MgB$_2$ spherical shells with a thickness as low as 200 nm while maintaining the high $T_{\rm c}$ and $J_{\rm c}$, thereby taking a further step towards the application of the shell in superconducting magnetic levitation for ICF.
Keywords:  superconducting spherical shells      MgB$_2$      HPCVD      critical current density  
Received:  08 February 2025      Revised:  06 April 2025      Accepted manuscript online:  17 April 2025
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.70.Ad (Metals; alloys and binary compounds)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  74.25.-q (Properties of superconductors)  
Corresponding Authors:  Yue Wang     E-mail:  yue.wang@pku.edu.cn

Cite this article: 

Ruining Sun(孙瑞宁), Tiequan Xu(徐铁权), Yue Wang(王越), Furen Wang(王福仁), and Zizhao Gan(甘子钊) Fabrication and characterization of MgB2 spherical shells with reduced thickness on 1 mm diameter Si3N4 spheres 2025 Chin. Phys. B 34 077402

[1] Buchman S, Lipa J A, Keiser G M, Muhlfelder B and Turneaure J P 2015 Class. Quantum Grav. 32 224004
[2] Goodkind J M 1999 Rev. Sci. Instrum. 70 4131
[3] Everitt C W F, DeBra D B, Parkinson B W, et al. 2011 Phys. Rev. Lett. 106 221101
[4] Everitt C W F, Muhlfelder B, DeBra D B, et al. 2015 Class. Quantum Grav. 32 224001
[5] Huang X, Hu X, Cui C, Wang H, Niu F, Zhang Y, Wang L, Wang Q, Hao X, Liu M, Chen X and Yang Y 2022 IEEE Trans. Instrum. Meas. 71 9502410
[6] Merlet S, Le Moigne N, Métivier G P, Bernard J D, Little F, Boy J P, Rosat S, Gabalda G, Seoane L, Bonvalot S, Champollion C, Mémin A, Maia M and Charade O 2024 IEEE Instrum. Meas. Mag. 27 24
[7] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
[8] Li X, Xiao T, Chen F, Zhang Y, Li X and Wu W 2018 Matter Radiat. Extremes 3 104
[9] Smalyuk V A, Robey H F, Alday C L, et al. 2018 Phys. Plasmas 25 072705
[10] Tollefson J and Gibney E 2022 Nature 612 597
[11] Tollefson J 2024 Nature 625 11
[12] Weber C R, Casey D T, Clark D S, et al. 2017 Phys. Plasmas 24 056302
[13] Gibson C R, Atkinson D P, Baltz J A, Brugman V P, Coffield F E, Edwards O D, Haid B J, Locke S F, Malsbury T N, Shiromizu S J and Skulina K M 2009 Fusion Sci. Technol. 55 233
[14] Haan S W, Lindl J D, Callahan D A, et al. 2011 Phys. Plasmas 18 051001
[15] Betti R and Hurricane O A 2016 Nat. Phys. 12 435
[16] Bayu Aji L B, Baker A A, Bae J H, Beckham J L, Jacob R E, Shin S J, McCall S K and Kucheyev S O 2020 Thin Solid Films 710 138260
[17] Li X,Wang H, Li Z, Zeng Y, ZhongMandWang Y 2022 J. Supercond. Nov. Magn. 35 3537
[18] Xu T Q, Sun R N, Zhao J X, Wang Y, Wang F R and Gan Z Z 2023 Supercond. Sci. Technol. 36 095006
[19] Regan S P, Epstein R, Hammel B A, et al. 2013 Phys. Rev. Lett. 111 045001
[20] Gu J, Dai Z, Zou S, Ye W, Zheng W, Gu P and Zhu S 2017 Matter Radiat. Extremes 2 9
[21] Kritcher A L, Clark D, Haan S, Yi S A, Zylstra A B, Callahan D A, Hinkel D E, Berzak Hopkins L F, Hurricane O A, Landen O L, MacLaren S A, Meezan N B, Patel P K, Ralph J, Thomas C A, Town R and Edwards M J 2018 Phys. Plasmas 25 056309
[22] Zhang C, Wang Y, Wang D, Zhang Y, Liu Z H, Feng Q R and Gan Z Z 2013 J. Appl. Phys. 114 023903
[23] Cheng S H, Zhang Y, Wang H Z, Li Y L, Yang C and Wang Y 2018 AIP Adv. 8 075015
[24] Hur N, Sharma P A, Guha S, CieplakMZ,Werder D J, Horibe Y, Chen C H and Cheong S W 2001 Appl. Phys. Lett. 79 4180
[25] Pogrebnyakov A V, Redwing J M, Raghavan S, Vaithyanathan V, Schlom D G, Xu S Y, Li Q, Tenne D A, Soukiassian A, Xi X X, Johannes M D, Kasinathan D, Pickett W E, Wu J S and Spence J C H 2004 Phys. Rev. Lett. 93 147006
[26] Tinkham M 2004 Introduction to Superconductivity 2nd edn. (New York: Dover)
[27] Lee S, Mori H, Masui T, Eltsev Y, Yamamoto A and Tajima S 2001 J. Phys. Soc. Japan 70 2255
[28] Poole C P Jr, Farach H A, Creswick R J and Prozorov R 2007 Superconductivity 2nd edn. (London: Academic)
[29] Bhagwat K V and Chaddah P 1990 Physica C 166 1
[30] Zhao Z W, Li S L, Ni Y M, Yang H P, Liu Z Y, Wen H H, Kang W N, Kim H J, Choi E M and Lee S I 2002 Phys. Rev. B 65 064512
[31] Liu L, Lee J M, Han Y, Song J, Kim C, Suk J, Kang W N, Liu J, Jung S and Park T 2023 Chin. Phys. B 32 127402
[32] Xi X X 2009 Supercond. Sci. Technol. 22 043001
[33] Wang H Z, Li Y L,Wang Y and Gan Z Z 2020 Physica C 569 1353587
[34] Zhuang C G, Meng S, Yang H, Jia Y, Wen H H, Xi X X, Feng Q R and Gan Z Z 2008 Supercond. Sci. Technol. 21 082002
[35] Wang J, Zhuang C G, Li J, Wu Z W, Li S, Chu H F, Feng Q R and Zheng D N 2009 Supercond. Sci. Technol. 22 045020
[36] Golubov A A, Brinkman A, Dolgov O V, Kortus J and Jepsen O 2002 Phys. Rev. B 66 054524
[37] Jin B B, Dahm T, Iniotakis C, Gubin A I, Choi E M, Kim H J, Lee S I, Kang W N, Wang S F, Zhou Y L, Pogrebnyakov A V, Redwing J M, Xi X X and Klein N 2005 Supercond. Sci. Technol. 18 L1
[38] Fomin V M and Dobrovolskiy O V 2022 Appl. Phys. Lett. 120 090501
[39] Yang H, Liu Y, Zhuang C, Shi J, Yao Y, Massidda S, Monni M, Jia Y, Xi X, Li Q, Liu Z K, Feng Q and Wen H H 2008 Phys. Rev. Lett. 101 067001
[1] Half-integer Shapiro steps in MgB2 focused He ion beam Josephson junctions
Dali Yin(殷大利), Xinwei Cai(蔡欣炜), Tiequan Xu(徐铁权), Ruining Sun(孙瑞宁), Ying Han(韩颖), Yan Zhang(张焱), Yue Wang(王越), and Zizhao Gan(甘子钊). Chin. Phys. B, 2024, 33(8): 087404.
[2] Terahertz high-sensitivity SIS mixer based on Nb-AlN-NbN hybrid superconducting tunnel junctions
Bo-Liang Liu(刘博梁), Dong Liu(刘冬), Ming Yao(姚明), Jun-Da Jin(金骏达), Zheng Wang(王争), Jing Li(李婧), Sheng-Cai Shi(史生才), Artem Chekushkin, Michael Fominsky, Lyudmila Filippenko, and Valery Koshelets. Chin. Phys. B, 2024, 33(5): 058501.
[3] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[4] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[5] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[6] Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), Ming He(何明). Chin. Phys. B, 2018, 27(5): 057403.
[7] Characteristics of Nb/Al superconducting tunnel junctions fabricated using ozone gas
Masahiro Ukibe, Go Fujii, Masataka Ohkubo. Chin. Phys. B, 2015, 24(9): 093301.
[8] Formation of epitaxial Tl2Ba2Ca2Cu3O10 superconducting films by dc-magnetron sputtering and triple post-annealing method
Xie Wei (解伟), Wang Pei (王培), Ji Lu (季鲁), Ge De-Yong (葛德永), Du Jia-Nan (杜佳男), Gao Xiao-Xin (高晓昕), Liu Xin (刘欣), Song Feng-Bin (宋凤斌), Hu Lei (胡磊), Zhang Xu (张旭), He Ming (何明), Zhao Xin-Jie (赵新杰). Chin. Phys. B, 2014, 23(7): 077401.
[9] A new model analysis of the third harmonic voltage in inductive measurement for critical current density of superconducting films
Zhang Xu(张旭),Wu Zhi-Zhen(吴之珍),Zhou Tie-Ge(周铁戈), He Ming(何明), Zhao Xin-Jie(赵新杰),Yan Shao-Lin(阎少林),and Fang Lan(方兰). Chin. Phys. B, 2011, 20(2): 027401.
No Suggested Reading articles found!