| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
CMOS compatibility and excellent resistive switching of tantalum oxide-based resistive switching memory |
| Liping Fu(傅丽萍), Gaoyuan Pan(潘高远), Rui Hao(郝瑞), Xiaolong Fan(范小龙), and Yingtao Li(李颖弢)† |
| School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
|
|
Abstract A CMOS compatible RRAM device with TaN/Ta/TaO$_{x}$/TaN structure was proposed for nonvolatile memory applications. Excellent resistive switching characteristics, including low operation voltages ($< 1$ V), low operation current (< 100 μA), good programming/erasing endurance ($> 10^{6}$ cycles), satisfactory uniformity, and reliable data retention, have been demonstrated. Furthermore, all of the elements in the fabricated TaN/Ta/TaO$_{x}$/TaN devices are highly compatible with modern CMOS manufacturing process, showing promising application in the next generation of nonvolatile memory.
|
Received: 12 February 2025
Revised: 07 March 2025
Accepted manuscript online: 15 April 2025
|
|
PACS:
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
| |
73.40.Rw
|
(Metal-insulator-metal structures)
|
| |
61.72.jd
|
(Vacancies)
|
| |
68.60.-p
|
(Physical properties of thin films, nonelectronic)
|
|
| Fund: Project supported by the Key Research and Development Program of Gansu Province - Industrial Project (Grant No. 25YFGA005). |
Corresponding Authors:
Yingtao Li
E-mail: ytli@lzu.edu.cn
|
Cite this article:
Liping Fu(傅丽萍), Gaoyuan Pan(潘高远), Rui Hao(郝瑞), Xiaolong Fan(范小龙), and Yingtao Li(李颖弢) CMOS compatibility and excellent resistive switching of tantalum oxide-based resistive switching memory 2025 Chin. Phys. B 34 077201
|
[1] Li Y T, Long S B, Lv H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305 [2] Lanza M, Hui F, Wen C and Ferrari A C 2023 Adv. Mater. 35 2205402 [3] Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2018 Nat. Commun. 9 2385 [4] Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B and Liu M 2018 Adv. Mater. 30 1705193 [5] Liu Q, Sun J, Lv H B, Long S B, Yin K B,Wan N, Li Y T, Sun L T and Liu M 2012 Adv. Mater. 24 1844 [6] Kim G H, Lee J H, Ahn Y, JeonW, Song S J, Seok J Y, Yoon J H, Yoon K J, Park T J and Hwang C S 2013 Adv. Funct. Mater. 23 1440 [7] Sun J, Liu Q, Xie H W, Wu X, Xu F, Xu T, Long S B, Lv H B, Li Y T, Sun L T and Liu M 2013 Appl. Phys. Lett. 102 053502 [8] Kumar S, Strachan J and Williams R 2017 Nature 548 318 [9] Lee H Y, Chen Y S, Chen P S, Wu T Y, Chen F, Wang C C, Tzeng P J, Tsai M J and Lien C 2010 IEEE Electron Dev. Lett. 31 44 [10] Li Y T, Yin L J, Wu Z W, Li X Y, Song X Q, Gao X P and Fu L P 2019 IEEE Electron Dev. Lett. 40 1599 [11] Huang X, Wang Y, Huang H, Duan L and Guo T 2024 Chin. Phys. B 33 017303 [12] Chen Y Q, Tang Z H, Jiang C Z and Xu D G 2023 Chin. Phys. B 32 097302 [13] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hu J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625 [14] Yang J J, Zhang M X, Strachan J P, Miao F, Pickett M D, Kelley R D, Ribeiro G M and Williams R S 2010 Appl. Phys. Lett. 97 232102 [15] Yang Y C, Sheridan P and Lu W 2012 Appl. Phys. Lett. 100 203112 [16] Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Ribeiro G M and Williams R S 2011 Adv. Mater. 23 5633 [17] Lee S R and Kang B S 2024 Curr. Appl. Phys. 61 75 [18] Song Y W, Chang Y H, Choi J, Song M K, Yoon J H, Lee S, Jung S Y, Ham W, Park J M, Kim H S and Kwon J Y 2023 Appl. Surf. Sci. 631 157356 [19] Mathkari R, Liehr M, Ravindra P, Pareis R, Beckmann K, Tokranova N, Schujman S, Saraf I, Straten O V, Gong N, Ando T and Nathaniel Cady 2025 Mater. Sci. Semicond. Process. 186 109060 [20] Sihn S, Chambers W L, Abedin M, Beckmann K, Cady N, Ganguli S and A K Roy 2024 Small 2310542 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|