Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077201    DOI: 10.1088/1674-1056/adcc86
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

CMOS compatibility and excellent resistive switching of tantalum oxide-based resistive switching memory

Liping Fu(傅丽萍), Gaoyuan Pan(潘高远), Rui Hao(郝瑞), Xiaolong Fan(范小龙), and Yingtao Li(李颖弢)†
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  A CMOS compatible RRAM device with TaN/Ta/TaO$_{x}$/TaN structure was proposed for nonvolatile memory applications. Excellent resistive switching characteristics, including low operation voltages ($< 1$ V), low operation current (< 100 μA), good programming/erasing endurance ($> 10^{6}$ cycles), satisfactory uniformity, and reliable data retention, have been demonstrated. Furthermore, all of the elements in the fabricated TaN/Ta/TaO$_{x}$/TaN devices are highly compatible with modern CMOS manufacturing process, showing promising application in the next generation of nonvolatile memory.
Keywords:  resistive switching      tantalum oxide      CMOS compatibility  
Received:  12 February 2025      Revised:  07 March 2025      Accepted manuscript online:  15 April 2025
PACS:  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.40.Rw (Metal-insulator-metal structures)  
  61.72.jd (Vacancies)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
Fund: Project supported by the Key Research and Development Program of Gansu Province - Industrial Project (Grant No. 25YFGA005).
Corresponding Authors:  Yingtao Li     E-mail:  ytli@lzu.edu.cn

Cite this article: 

Liping Fu(傅丽萍), Gaoyuan Pan(潘高远), Rui Hao(郝瑞), Xiaolong Fan(范小龙), and Yingtao Li(李颖弢) CMOS compatibility and excellent resistive switching of tantalum oxide-based resistive switching memory 2025 Chin. Phys. B 34 077201

[1] Li Y T, Long S B, Lv H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305
[2] Lanza M, Hui F, Wen C and Ferrari A C 2023 Adv. Mater. 35 2205402
[3] Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2018 Nat. Commun. 9 2385
[4] Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B and Liu M 2018 Adv. Mater. 30 1705193
[5] Liu Q, Sun J, Lv H B, Long S B, Yin K B,Wan N, Li Y T, Sun L T and Liu M 2012 Adv. Mater. 24 1844
[6] Kim G H, Lee J H, Ahn Y, JeonW, Song S J, Seok J Y, Yoon J H, Yoon K J, Park T J and Hwang C S 2013 Adv. Funct. Mater. 23 1440
[7] Sun J, Liu Q, Xie H W, Wu X, Xu F, Xu T, Long S B, Lv H B, Li Y T, Sun L T and Liu M 2013 Appl. Phys. Lett. 102 053502
[8] Kumar S, Strachan J and Williams R 2017 Nature 548 318
[9] Lee H Y, Chen Y S, Chen P S, Wu T Y, Chen F, Wang C C, Tzeng P J, Tsai M J and Lien C 2010 IEEE Electron Dev. Lett. 31 44
[10] Li Y T, Yin L J, Wu Z W, Li X Y, Song X Q, Gao X P and Fu L P 2019 IEEE Electron Dev. Lett. 40 1599
[11] Huang X, Wang Y, Huang H, Duan L and Guo T 2024 Chin. Phys. B 33 017303
[12] Chen Y Q, Tang Z H, Jiang C Z and Xu D G 2023 Chin. Phys. B 32 097302
[13] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hu J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625
[14] Yang J J, Zhang M X, Strachan J P, Miao F, Pickett M D, Kelley R D, Ribeiro G M and Williams R S 2010 Appl. Phys. Lett. 97 232102
[15] Yang Y C, Sheridan P and Lu W 2012 Appl. Phys. Lett. 100 203112
[16] Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Ribeiro G M and Williams R S 2011 Adv. Mater. 23 5633
[17] Lee S R and Kang B S 2024 Curr. Appl. Phys. 61 75
[18] Song Y W, Chang Y H, Choi J, Song M K, Yoon J H, Lee S, Jung S Y, Ham W, Park J M, Kim H S and Kwon J Y 2023 Appl. Surf. Sci. 631 157356
[19] Mathkari R, Liehr M, Ravindra P, Pareis R, Beckmann K, Tokranova N, Schujman S, Saraf I, Straten O V, Gong N, Ando T and Nathaniel Cady 2025 Mater. Sci. Semicond. Process. 186 109060
[20] Sihn S, Chambers W L, Abedin M, Beckmann K, Cady N, Ganguli S and A K Roy 2024 Small 2310542
[1] Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design
Xianglin Huang(黄香林), Ying Wang(王英), Huixiang Huang(黄慧香), Li Duan(段理), and Tingting Guo(郭婷婷). Chin. Phys. B, 2024, 33(1): 017303.
[2] Resistive switching properties of SnO2 nanowires fabricated by chemical vapor deposition
Ya-Qi Chen(陈亚琦), Zheng-Hua Tang(唐政华), Chun-Zhi Jiang(蒋纯志), and De-Gao Xu(徐徳高). Chin. Phys. B, 2023, 32(9): 097302.
[3] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[4] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[5] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[6] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[7] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[8] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[9] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[10] Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device
Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩). Chin. Phys. B, 2021, 30(11): 118701.
[11] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[12] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[13] Electro-optical dual modulation on resistive switching behavior in BaTiO3/BiFeO3/TiO2 heterojunction
Jia-Jia Zhao(赵佳佳), Jin-Shuai Zhang(张金帅), Feng Zhang(张锋), Wei Wang(王威), Hai-Rong He(何海蓉), Wang-Yang Cai(蔡汪洋), Jin Wang(王进). Chin. Phys. B, 2019, 28(12): 126801.
[14] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[15] Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures
Hao-Nan Liu(刘浩男), Xiao-Xia Suo(索晓霞), Lin-Ao Zhang(张林奥), Duan Zhang(张端), Han-Chun Wu(吴汉春), Hong-Kang Zhao(赵宏康), Zhao-Tan Jiang(江兆潭), Ying-Lan Li(李英兰), Zhi Wang(王志). Chin. Phys. B, 2018, 27(2): 027104.
No Suggested Reading articles found!