Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058501    DOI: 10.1088/1674-1056/ad2bf7
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Terahertz high-sensitivity SIS mixer based on Nb-AlN-NbN hybrid superconducting tunnel junctions

Bo-Liang Liu(刘博梁)1,2, Dong Liu(刘冬)1,2,†, Ming Yao(姚明)1, Jun-Da Jin(金骏达)1, Zheng Wang(王争)1,2, Jing Li(李婧)1,2, Sheng-Cai Shi(史生才)1,2,‡, Artem Chekushkin3, Michael Fominsky3, Lyudmila Filippenko3, and Valery Koshelets3
1 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China;
2 School of Astronomy and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
3 Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
Abstract  The terahertz band, a unique segment of the electromagnetic spectrum, is crucial for observing the cold, dark universe and plays a pivotal role in cutting-edge scientific research, including the study of cosmic environments that support life and imaging black holes. High-sensitivity superconductor-insulator-superconductor (SIS) mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays. Compared to the commonly used classical Nb/AlOx/Nb superconducting tunnel junction, the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density. This makes it particularly promising for the development of ultra-wideband, high-sensitivity coherent detectors or mixers in various scientific research fields. In this paper, we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions (PCTJ), which has a bandwidth extending up to 490 GHz-720 GHz. The best achieved double-sideband (DSB) noise temperature (sensitivity) is below three times the quantum noise level.
Keywords:  SIS mixer      terahertz      gap voltage      critical current density      hybrid superconducting tunnel junction  
Received:  18 January 2024      Revised:  07 February 2024      Accepted manuscript online:  22 February 2024
PACS:  85.25.Pb (Superconducting infrared, submillimeter and millimeter wave detectors)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
  95.55.Jz (Radio telescopes and instrumentation; heterodyne receivers)  
Fund: Project supported in part by the National Key Research and Development Program of China (Grant Nos. 2023YFA1608201 and 2023YFF0722301) and the National Natural Science Foundation of China (Grant Nos. 11925304, 12020101002, 12333013, 12273119, and 12103093). The samples fabrication was supported by grant from the Russian Science Foundation (Grant No. 23-79-00019).
Corresponding Authors:  Dong Liu, Sheng-Cai Shi     E-mail:  dliu@pmo.ac.cn;scshi@pmo.ac.cn

Cite this article: 

Bo-Liang Liu(刘博梁), Dong Liu(刘冬), Ming Yao(姚明), Jun-Da Jin(金骏达), Zheng Wang(王争), Jing Li(李婧), Sheng-Cai Shi(史生才), Artem Chekushkin, Michael Fominsky, Lyudmila Filippenko, and Valery Koshelets Terahertz high-sensitivity SIS mixer based on Nb-AlN-NbN hybrid superconducting tunnel junctions 2024 Chin. Phys. B 33 058501

[1] Phillips T G and Keene J 1992 Proc. IEEE 80 1662
[2] Ho P T P, Moran J M and Lo K Y 2004 Astrophys. J. 616 L1
[3] Wootten B A and Thompson A R 2009 Proc. IEEE 97 1463
[4] De Graauw T, Helmich F P, Phillips T G, et al. 2010 Astron. Astrophys. 518 L6
[5] Zmuidzinas J and Richards P L 2004 Proc. IEEE 92 1597
[6] Shi S C, Paine S, Yao Q J, Lin Z H, Li X X, Duan W Y, Matsuo H, Zhang Q Z, Yang J, Ashley M C B, Shang Z H and Hu Z W 2016 Nat. Astron. 1 0001
[7] Lin Z H, Miao W, Yao M, Wu F, Yao Q J, Fan B W, Liu B L and Shi S C 2023 Sci. China-Phys. Mech. Astron 66 299515
[8] Tucker J R and Feldman M J 1985 Rev. Mod. Phys. 57 1055
[9] Li J, Takeda M, Wang Z, Shi S C and Yang J 2008 Appl. Phys. Lett. 92 222504
[10] Torgashin M Y, Koshelets V P, Dmitriev P N, Ermakov A B, Filippenko L V and Yagoubov P A 2007 IEEE Trans. Appl. Supercond. 17 379
[11] Shi S C and Noguchi T 1998 IEICE Trans. Electron. 81 1584
[12] Zmuidzinas J, LeDuc H G, Stern J A and Cypher S R 1994 IEEE Trans. Microw. Theory 42 698
[13] Mattis D C and Bardeen J 1958 Phys. Rev. 111 412
[14] Dmitriev P N, Lapitskaya I L, Filippenko L V, Ermakov A B, Shitov S V, Prokopenko G V, Kovtonyuk S A and Koshelets V P 2003 IEEE Trans. Appl. Supercond. 13 107
[15] Fominsky M Y, Filippenko L V, Chekushkin A M, Dmitriev P N and Koshelets V P 2021 Electronics 10 2944
[16] Kerr A R, Feldman M J and Pan S K 1997 Proceedings of the 8th International Symposium on Space Terahertz Technology, March 25-27, 1997, Massachusetts, USA, p. 101
[17] Callen H B and Welton T 1951 Phys. Rev. 83 34
[18] Erickson N 2004 Proceedings of the 15th International Symposium on Space Terahertz Technology, April 27-29, 2004, Massachusetts, USA, p. 135
[19] Bryerton E W and Hesler J 2008 Proceedings of the 19th International Symposium on Space Terahertz Technology, April 28-30, 2008, Groningen, The Netherlands, p. 498
[20] Li H H, Lv W T, Liu D, Fan B W, Yao M, Liu B L, Li J and Shi S C 2019 Infrared, Millimeter-Wave, and Terahertz Technologies VI. SPIE, October 20-23, 2019, Hangzhou, China, p. 132
[1] Terahertz toroidal dipole metamaterial sensors for detection of aflatoxin B1
Jianwei Xu(徐建伟), Shoujian Ouyang(欧阳收剑), Shouxin Duan(段守鑫), Liner Zou(邹林儿), Danni Ye(叶丹妮), Sijia Yang(杨思嘉), and Xiaohua Deng(邓晓华). Chin. Phys. B, 2024, 33(3): 038701.
[2] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[3] Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
K Gopal, A P Singh, and S Divya. Chin. Phys. B, 2023, 32(6): 065202.
[4] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[5] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[6] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[7] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[8] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[9] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[10] Multi-channel terahertz focused beam generator based on shared-aperture metasurface
Jiu-Sheng Li(李九生) and Yi Chen(陈翊). Chin. Phys. B, 2023, 32(12): 124204.
[11] Terahertz shaping technology based on coherent beam combining
Xiao-Ran Zheng(郑晓冉), Dan-Ni Ma(马丹妮), Guang-Tong Jiang(蒋广通), Cun-Lin Zhang(张存林), and Liang-Liang Zhang(张亮亮). Chin. Phys. B, 2023, 32(11): 114210.
[12] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[13] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[14] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[15] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
No Suggested Reading articles found!