Abstract Quantum communication networks, such as quantum key distribution (QKD) networks, typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types. To achieve direct communication between the devices with different quantum encoding types, in this paper, we propose encoding conversion schemes between the polarization bases (rectilinear, diagonal and circular bases) and the time-bin phase bases (two phase bases and time-bin basis) and design the quantum encoding converters. The theoretical analysis of the encoding conversion schemes is given in detail, and the basis correspondence of encoding conversion and the property of bit flip are revealed. The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter. Since no optical switches are used in our scheme, the converter can be operated with high speed. The converters can also be modularized, which may be utilized to realize miniaturization in the future.
Hua-Xing Xu(许华醒), Shao-Hua Wang(王少华), Ya-Qi Song(宋雅琪), Ping Zhang(张平), and Chang-Lei Wang(王昌雷) Encoding converters for quantum communication networks 2025 Chin. Phys. B 34 050310
[1] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504 [2] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [3] Wang S, Chen W, Yin Z Q, He D Y, Hui C, Hao P L, Fan Yuan G J, Wang C, Zhang L J, Kuang J, Liu S F, Zhou Z, Wang Y G, Guo G C and Han Z F 2018 Opt. Lett. 43 2030 [4] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You L, Wang Z, Wang X B, Zhang Q and Pan J W 2020 Phys. Rev. Lett. 124 070501 [5] Wang S, Yin Z Q, He D Y, ChenW,Wang R Q, Ye P, Zhou Y, Fan Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154 [6] Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70 [7] Ma X S, Herbst T, Scheidl T, Wang D, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimova E, Makarov V, Jennewein T, Ursin R and Zeilinger A 2012 Nature 489 269 [8] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641 [9] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [10] Pan D, Lin Z, Wu J, Zhang H, Sun Z, Ruan D, Yin L and Long G L 2020 Photon. Res. 8 1522 [11] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43 [12] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214 [13] Bennett C H and Brassard G 1984 International Conference on Computers, Systems & Signal Processing, December 9 12, 1984, Bangalore, India, p. 175 [14] Bennett C H and Brassard G 1989 SIGACT News 20 78 [15] Elliott C 2002 New J. Phys. 4 46 [16] Elliott C, Colvin A, Pearson D, Pikalo O, Schlafer J and Yeh H 2005 Quantum Information and Computation III, March 28 April 1, 2005, Orlando, Florida, p. 138 [17] Dianati M and Alleaume R 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07), Jan 2 6, 2007, Guadeloupe, Guadeloupe, p. 13 [18] Dianati M, Alléaume R, Gagnaire M and Shen X Sherman 2008 Security and Communication Networks 1 57 [19] Peev M, Pacher C, Alléaume R, Barreiro C, et al. 2009 New J. Phys. 11 075001 [20] Sasaki M, Fujiwara M, Ishizuka H, et al. 2011 Opt. Express 19 10387 [21] Agnesi C, Avesani M, Calderaro L, Stanco A, Foletto G, Zahidy M, Scriminich A, Vedovato F, Vallone G and Villoresi P 2020 Optica 7 284 [22] Grünenfelder F, Boaron A, Rusca D, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 051108 [23] Peng C Z, Zhang J, Yang D, GaoWB, Ma H X, Yin H, Zeng H P, Yang T, Wang X B and Pan J W 2007 Phys. Rev. Lett. 98 010505 [24] Liu Y, Chen T Y, Wang J, Cai W Q, Wan X, Chen L K, Wang J H, Liu S B, Liang H, Yang L, Peng C Z, Chen K, Chen Z B and Pan J W 2010 Opt. Express 18 8587 [25] Tang Z, Liao Z, Xu F, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503 [26] Wang Z X, Xu H X, Li J, Yu H C, Huang J Q, Han H,Wang C L, Zhang P, Yin F F, Xu K, Liu B and Dai Y T 2025 EPJ Quantum Technol. 12 47 [27] Muller A, Herzog T, Huttner B, Tittel W, Zbinden H and Gisin N 1997 Appl. Phys. Lett. 70 793 [28] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762 [29] Xu H X, Wang S H, Wang C L and Zhang P 2006 Chin. Phys. Lett. 42 010303 [30] Tang G Z, Sun S H, Chen H, Li C Y and Liang L M 2016 Chin. Phys. Lett. 33 120301 [31] Islam N T, Lim C C W, Cahall C, Kim J and Gauthier D J 2017 Sci. Adv. 3 1701491 [32] Roberts G L, Lucamarini M, Dynes J F, Savory S J, Yuan Z L and Shields A J 2017 Laser & Photonics Reviews 11 1700067 [33] Boaron A, Korzh B, Houlmann R, Boso G, Rusca D, Gray S, Li M J, Nolan D, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 171108 [34] Lutkenhaus N 2024 (US Patent) 20040151321 [2004 8 5] [35] Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307 [36] Bruß D 1998 Phys. Rev. Lett. 81 3018 [37] Bennett C H 1992 Phys. Rev. Lett. 68 3121 [38] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.