INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Optimize Purcell filter design for reducing influence of fabrication variation |
Xiao Cai(蔡晓)1, Yi-Biao Zhou(周翼彪)2, Wen-Long Yu(于文龙)1, Kang-Lin Xiong(熊康林)1,2, and Jia-Gui Feng(冯加贵)1,2,† |
1 Gusu Laboratory of Materials, Suzhou 215123, China; 2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China |
|
|
Abstract To protect superconducting qubits and enable rapid readout, optimally designed Purcell filters are essential. To suppress the off-resonant driving of untargeted readout resonators, individual Purcell filters are used for each readout resonator. However, achieving consistent frequency between a readout resonator and a Purcell filter is a significant challenge. A systematic computational analysis is conducted to investigate how fabrication variation affects filter performance, through focusing on the coupling capacitor structure and coplanar waveguide (CPW) transmission line specifications. The results indicate that the T-type enclosing capacitor (EC), which exhibits lower structural sensitivity, is more advantageous for achieving target capacitance than the C-type EC and the interdigital capacitor (IDC). By utilizing a large-sized CPW with the T-type EC structure, fluctuations in the effective coupling strength can be reduced to 10%, given typical micro-nanofabrication variances. The numerical simulations presented in this work minimize the influence of fabrication deviations, thereby significantly improving the reliability of Purcell filter designs.
|
Received: 25 December 2023
Revised: 25 February 2024
Accepted manuscript online: 13 March 2024
|
PACS:
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
84.30.Vn
|
(Filters)
|
|
84.32.Tt
|
(Capacitors)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project support by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) (Grant No. 2019319), the Start-up Foundation of Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou, China (Grant No. Y9AAD110), the Innovative and Entrepreneurial Talents Project of Jiangsu Province, China (Grant No. JSSCBS20221743), and the Excellent Postdoctoral Talent Program of Jiangsu Province, China (Grant No. 2023ZB816). |
Corresponding Authors:
Jia-Gui Feng
E-mail: jgfeng2017@sinano.ac.cn
|
Cite this article:
Xiao Cai(蔡晓), Yi-Biao Zhou(周翼彪), Wen-Long Yu(于文龙), Kang-Lin Xiong(熊康林), and Jia-Gui Feng(冯加贵) Optimize Purcell filter design for reducing influence of fabrication variation 2024 Chin. Phys. B 33 068501
|
[1] Wendin G 2017 Rep. Prog. Phys. 80 106001 [2] McRae C R H, Wang H, Gao J, Vissers M R, Brecht T, Dunsworth A, Pappas D P and Mutus J 2020 Rev. Sci. Instrum. 91 091101 [3] Kurter C, Murray C E, Gordon R T, Wymore B B, Sandberg M, Shelby R M, Eddins A, Adiga V P, Finck A D K, Rivera E, Stabile A A, Trimm B, Wacaser B, Balakrishnan K, Pyzyna A, Sleight J, Steffen M and Rodbell K 2022 npj Quantum Inf. 8 31 [4] Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M and Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601 [5] Place 2022 Increasing Lifetimes of Superconducting Qubits Ph.D. Dissertation (New Jersey: Princeton University) [6] Sete E A, Martinis J M and Korotkov A N 2015 Phys. Rev. A 92 012325 [7] Reed M D, Johnson B R, Houck A A, DiCarlo L, Chow J M, Schuster D I, Frunzio L and Schoelkopf R J 2010 Appl. Phys. Lett. 96 203110 [8] Liu C H, Harrison D C, Patel S, Wilen C D, Rafferty O, Shearrow A, Ballard A, Iaia V, Ku J, Plourde B L T and McDermott R 2024 Phys. Rev. Lett. 132 017001 [9] Pan X, Zhou Y, Yuan H, Nie L, Wei W, Zhang L, Li J, Liu S, Jiang Z H and Catelani G 2022 Nat. Commun. 13 7196 [10] Sank D T 2014 Fast, Accurate State Measurement in Superconducting Qubits Ph.D. Dissertation, (California: University of California Santa Barbara) [11] Neill C, Roushan P, Kechedzhi K, Boixo S, Isakov S V, Smelyanskiy V, Megrant A, Chiaro B, Dunsworth A and Arya K 2018 Science 360 195 [12] Bronn N T, Liu Y, Hertzberg J B, Córcoles A D, Houck A A, Gambetta J M and Chow J M 2015 Appl. Phys. Lett. 107 172601 [13] Jeffrey E, Sank D, Mutus J, White T, Kelly J, Barends R, Chen Y, Chen Z, Chiaro B and Dunsworth A 2014 Phys. Rev. Lett. 112 190504 [14] Sunada Y, Kono S, Ilves J, Tamate S, Sugiyama T, Tabuchi Y and Nakamura Y 2022 Phys. Rev. Appl. 17 044016 [15] Zhang X, Kim E, Mark D K, Choi S and Painter O 2023 Science 379 278 [16] Yan H, Wu X, Lingenfelter A, Joshi Y J, Andersson G, Conner C R, Chou M H, Grebel J, Miller J M, Povey R G, Qiao H, Clerk A A and Cleland A N 2023 Appl. Phys. Lett. 123 134001 [17] Iakoupov I and Koshino K 2023 Phys. Rev. Res. 5 013148 [18] Salathé Y D 2018 Toolbox for quantum computing and digital quantum simulation with superconducting qubits Ph.D. Dissertation, (Zürich: ETH Zurich) [19] Bronn N T, Magesan E, Masluk N A, Chow J M, Gambetta J M and Steffen M 2015 IEEE Trans. Appl. Supercond. 25 1 [20] Heinsoo J, Andersen C K, Remm A, Krinner S, Walter T, Salathé Y, Gasparinetti S, Besse J C, Potočnik A and Wallraff A 2018 Phys. Rev. Appl. 10 034040 [21] Vallés-Sanclemente S, van der Meer S L M, Finkel M, Muthusubra-manian N, Beekman M, Ali H, Marques J F, Zachariadis C, Veen H M, Stavenga T, Haider N and DiCarlo L 2023 Appl. Phys. Lett. 123 034004 [22] Cai X, Zhou B, Wu Y, Li S, Dong Y, Feng J and Xiong K 2023 Supercond. Sci. Technol. 36 085001 [23] Reuer K, Landgraf J, Fösel T, O’Sullivan J, Beltrán L, Akin A, Norris G J, Remm A, Kerschbaum M, Besse J C, Marquardt F, Wallraff A and Eichler C 2023 Nat. Commun. 14 7138 [24] Andersen C K, Remm A, Lazar S, Krinner S, Heinsoo J, Besse J C, Gabureac M, Wallraff A and Eichler C 2019 npj Quantum Inf. 5 69 [25] Herrmann J, Llima S M, Remm A, Zapletal P, McMahon N A, Scarato C, Swiadek F, Andersen C K, Hellings C, Krinner S, Lacroix N, Lazar S, Kerschbaum M, Zanuz D C, Norris G J, Hartmann M J, Wallraff A and Eichler C 2022 Nat. Commun. 13 4144 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|