Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 068501    DOI: 10.1088/1674-1056/ad3345
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optimize Purcell filter design for reducing influence of fabrication variation

Xiao Cai(蔡晓)1, Yi-Biao Zhou(周翼彪)2, Wen-Long Yu(于文龙)1, Kang-Lin Xiong(熊康林)1,2, and Jia-Gui Feng(冯加贵)1,2,†
1 Gusu Laboratory of Materials, Suzhou 215123, China;
2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  To protect superconducting qubits and enable rapid readout, optimally designed Purcell filters are essential. To suppress the off-resonant driving of untargeted readout resonators, individual Purcell filters are used for each readout resonator. However, achieving consistent frequency between a readout resonator and a Purcell filter is a significant challenge. A systematic computational analysis is conducted to investigate how fabrication variation affects filter performance, through focusing on the coupling capacitor structure and coplanar waveguide (CPW) transmission line specifications. The results indicate that the T-type enclosing capacitor (EC), which exhibits lower structural sensitivity, is more advantageous for achieving target capacitance than the C-type EC and the interdigital capacitor (IDC). By utilizing a large-sized CPW with the T-type EC structure, fluctuations in the effective coupling strength can be reduced to 10%, given typical micro-nanofabrication variances. The numerical simulations presented in this work minimize the influence of fabrication deviations, thereby significantly improving the reliability of Purcell filter designs.
Keywords:  superconducting circuit      Purcell filter      coplanar waveguide      capacitor structure  
Received:  25 December 2023      Revised:  25 February 2024      Accepted manuscript online:  13 March 2024
PACS:  85.25.Am (Superconducting device characterization, design, and modeling)  
  84.30.Vn (Filters)  
  84.32.Tt (Capacitors)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project support by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) (Grant No. 2019319), the Start-up Foundation of Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou, China (Grant No. Y9AAD110), the Innovative and Entrepreneurial Talents Project of Jiangsu Province, China (Grant No. JSSCBS20221743), and the Excellent Postdoctoral Talent Program of Jiangsu Province, China (Grant No. 2023ZB816).
Corresponding Authors:  Jia-Gui Feng     E-mail:  jgfeng2017@sinano.ac.cn

Cite this article: 

Xiao Cai(蔡晓), Yi-Biao Zhou(周翼彪), Wen-Long Yu(于文龙), Kang-Lin Xiong(熊康林), and Jia-Gui Feng(冯加贵) Optimize Purcell filter design for reducing influence of fabrication variation 2024 Chin. Phys. B 33 068501

[1] Wendin G 2017 Rep. Prog. Phys. 80 106001
[2] McRae C R H, Wang H, Gao J, Vissers M R, Brecht T, Dunsworth A, Pappas D P and Mutus J 2020 Rev. Sci. Instrum. 91 091101
[3] Kurter C, Murray C E, Gordon R T, Wymore B B, Sandberg M, Shelby R M, Eddins A, Adiga V P, Finck A D K, Rivera E, Stabile A A, Trimm B, Wacaser B, Balakrishnan K, Pyzyna A, Sleight J, Steffen M and Rodbell K 2022 npj Quantum Inf. 8 31
[4] Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M and Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601
[5] Place 2022 Increasing Lifetimes of Superconducting Qubits Ph.D. Dissertation (New Jersey: Princeton University)
[6] Sete E A, Martinis J M and Korotkov A N 2015 Phys. Rev. A 92 012325
[7] Reed M D, Johnson B R, Houck A A, DiCarlo L, Chow J M, Schuster D I, Frunzio L and Schoelkopf R J 2010 Appl. Phys. Lett. 96 203110
[8] Liu C H, Harrison D C, Patel S, Wilen C D, Rafferty O, Shearrow A, Ballard A, Iaia V, Ku J, Plourde B L T and McDermott R 2024 Phys. Rev. Lett. 132 017001
[9] Pan X, Zhou Y, Yuan H, Nie L, Wei W, Zhang L, Li J, Liu S, Jiang Z H and Catelani G 2022 Nat. Commun. 13 7196
[10] Sank D T 2014 Fast, Accurate State Measurement in Superconducting Qubits Ph.D. Dissertation, (California: University of California Santa Barbara)
[11] Neill C, Roushan P, Kechedzhi K, Boixo S, Isakov S V, Smelyanskiy V, Megrant A, Chiaro B, Dunsworth A and Arya K 2018 Science 360 195
[12] Bronn N T, Liu Y, Hertzberg J B, Córcoles A D, Houck A A, Gambetta J M and Chow J M 2015 Appl. Phys. Lett. 107 172601
[13] Jeffrey E, Sank D, Mutus J, White T, Kelly J, Barends R, Chen Y, Chen Z, Chiaro B and Dunsworth A 2014 Phys. Rev. Lett. 112 190504
[14] Sunada Y, Kono S, Ilves J, Tamate S, Sugiyama T, Tabuchi Y and Nakamura Y 2022 Phys. Rev. Appl. 17 044016
[15] Zhang X, Kim E, Mark D K, Choi S and Painter O 2023 Science 379 278
[16] Yan H, Wu X, Lingenfelter A, Joshi Y J, Andersson G, Conner C R, Chou M H, Grebel J, Miller J M, Povey R G, Qiao H, Clerk A A and Cleland A N 2023 Appl. Phys. Lett. 123 134001
[17] Iakoupov I and Koshino K 2023 Phys. Rev. Res. 5 013148
[18] Salathé Y D 2018 Toolbox for quantum computing and digital quantum simulation with superconducting qubits Ph.D. Dissertation, (Zürich: ETH Zurich)
[19] Bronn N T, Magesan E, Masluk N A, Chow J M, Gambetta J M and Steffen M 2015 IEEE Trans. Appl. Supercond. 25 1
[20] Heinsoo J, Andersen C K, Remm A, Krinner S, Walter T, Salathé Y, Gasparinetti S, Besse J C, Potočnik A and Wallraff A 2018 Phys. Rev. Appl. 10 034040
[21] Vallés-Sanclemente S, van der Meer S L M, Finkel M, Muthusubra-manian N, Beekman M, Ali H, Marques J F, Zachariadis C, Veen H M, Stavenga T, Haider N and DiCarlo L 2023 Appl. Phys. Lett. 123 034004
[22] Cai X, Zhou B, Wu Y, Li S, Dong Y, Feng J and Xiong K 2023 Supercond. Sci. Technol. 36 085001
[23] Reuer K, Landgraf J, Fösel T, O’Sullivan J, Beltrán L, Akin A, Norris G J, Remm A, Kerschbaum M, Besse J C, Marquardt F, Wallraff A and Eichler C 2023 Nat. Commun. 14 7138
[24] Andersen C K, Remm A, Lazar S, Krinner S, Heinsoo J, Besse J C, Gabureac M, Wallraff A and Eichler C 2019 npj Quantum Inf. 5 69
[25] Herrmann J, Llima S M, Remm A, Zapletal P, McMahon N A, Scarato C, Swiadek F, Andersen C K, Hellings C, Krinner S, Lacroix N, Lazar S, Kerschbaum M, Zanuz D C, Norris G J, Hartmann M J, Wallraff A and Eichler C 2022 Nat. Commun. 13 4144
[1] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[2] Fast and perfect state transfer in superconducting circuit with tunable coupler
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(11): 110305.
[3] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[4] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[5] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[6] Integrated superconducting circuit for qubit and resonator protection
Xiao-Pei Yang(杨晓沛), Zhi-Kun Han(韩志坤), Shu-Qing Song(宋树清), Wen Zheng(郑文), Dong Lan(兰栋), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 078403.
[7] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[8] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[9] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[10] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[11] Fabrication of Al air-bridge on coplanar waveguide
Zhen-Chuan Jin(金震川), Hai-Teng Wu(吴海腾), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(10): 100310.
[12] High quality factor superconducting coplanar waveguide fabricated with TiN
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(5): 058402.
[13] Superconducting tunable filter with constant bandwidth using coplanar waveguide resonators
Ying Jiang(蒋莹), Bo Li(李博), Bin Wei(魏斌), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松), Li-Nan Jiang(姜立楠). Chin. Phys. B, 2017, 26(10): 108501.
[14] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[15] Design of a gap tunable flux qubit with FastHenry
Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波). Chin. Phys. B, 2016, 25(12): 120305.
No Suggested Reading articles found!