SPECIAL TOPIC — Quantum communication and quantum network |
Prev
Next
|
|
|
Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices |
Mingshuo Sun(孙铭烁)1,2, Chun-Hui Zhang(张春辉)1,2,†, Rui Zhang(章睿)3, Xing-Yu Zhou(周星宇)1,2, Jian Li(李剑)1,2, and Qin Wang(王琴)1,2,‡ |
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 Broadband Wireless Communication and Sensor Network Technology, Key Laboratory of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 3 Changqing Oilfield Company Digital and Intelligent Business Division, China National Petroleum Corporation, Xi'an 710299, China |
|
|
Abstract In principle, the asynchronous measurement-device-independent quantum key distribution (AMDI-QKD) can surpass the key rate capacity without phase tracking and phase locking. However, practical imperfections in sources or detections would dramatically depress its performance. Here, we present an improved model on AMDI-QKD to reduce the influence of these imperfections, including intensity fluctuation, the afterpulse effect, and the dead time of detectors. Furthermore, we carry out corresponding numerical simulations. Simulation results show that, by implementing our present work, it can have more than 100 km longer secure transmission distance and one order of magnitude enhancement in the key generation rate after 320 km compared with the standard method. Moreover, our model can still break the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound even under realistic experimental conditions.
|
Received: 08 July 2024
Revised: 26 August 2024
Accepted manuscript online: 30 August 2024
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by Natural Science Foundation of Jiangsu Province (Grant Nos. BE2022071 and BK20192001), the National Natural Science Foundation of China (Grant Nos. 12074194, 62101285, 62471248, and 12104240), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX22 0954). |
Corresponding Authors:
Chun-Hui Zhang, Qin Wang
E-mail: chz@njupt.edu.cn;qinw@njupt.edu.cn
|
Cite this article:
Mingshuo Sun(孙铭烁), Chun-Hui Zhang(张春辉), Rui Zhang(章睿), Xing-Yu Zhou(周星宇), Jian Li(李剑), and Qin Wang(王琴) Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices 2024 Chin. Phys. B 33 110302
|
[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing pp. 175-179 [2] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [3] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502 [4] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043 [5] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400 [6] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323 [7] Cui C H, Yin Z Q, Wang R, et al. 2019 Phys. Rev. Appl. 11 034053 [8] Ma X F, Zeng P and Zhou H Y 2018 Phys. Rev. X 8 031043 [9] Han Y X, Sun Z Q, Ma H Q, et al. 2022 Chin. Phys. Lett. 39 070301 [10] Wang S, Yin Z Q, Han Z F, et al. 2022 Nat. Photon. 16 154 [11] Liu Y, Zhang W J, Pan J W, et al. 2023 Phys. Rev. Lett. 130 210801 [12] Xie Y M, Lu Y S, Chen Z B, et al. 2022 PRX Quantum 3 020315 [13] Zeng P, Zhou H Y, Wu W J and Ma X F 2022 Nat. Commun. 13 3903 [14] Wang Z H, Wang R, Han Z F, et al. 2023 Commun. Phys. 6 265 [15] Zhou L, Lin J P, Yuan Z L, et al. 2023 Phys. Rev. Lett. 130 250801 [16] Zhu H T, Huang Y Z, Pan J W, et al. 2023 Phys. Rev. Lett. 130 030801 [17] Bai J L, Xie Y M, Chen Z B, et al. 2023 Opt. Lett. 48 3551 [18] Xie Y M, Bai J L, Chen Z B, et al. 2023 Phys. Rev. Appl. 19 054070 [19] Zhang C X, Wu D, An J M, et al. 2023 Chin. Phys. B 32 124207 [20] Wang X B 2007 Phys. Rev. A 75 052301 [21] Wang X B, Peng C Z, Pan J W, et al. 2008 Phys. Rev. A 77 042311 [22] Wang X B, Peng C Z and Pan J W 2007 Appl. Phys. Lett. 90 031110 [23] Jiang C, Yu Z W and Wang X B 2016 Phys. Rev. A 94 062323 [24] Jiang C, Yu Z W, Hu X L and Wang X B 2023 Nat. Sci. Rev. 10 nwac186 [25] Fan-Yuan G J, Wang C, Guo G C, et al. 2018 Phys. Rev. Appl. 10 064032 [26] Huang X J, Lu F Y, Han Z F, et al. 2022 Phys. Rev. A 106 062607 [27] Wang Z H, Wang S, Han Z F, et al. 2022 Opt. Express 30 28534 [28] Curty M, Xu F H, Cui W, et al. 2014 Nat. Commun. 5 3732 [29] Xu F H, Curty M, Qi B and Lo H K 2013 New J. Phys. 15 113007 [30] Feng B, Huang H D, Wang Q, et al. 2023 Chin. Phys. B 32 030307 [31] Davide R, Alberto B, Hugo Z, et al. 2018 Appl. Phys. Lett. 112 171104 [32] Curty M, Xu F H, Cui W, et al. 2014 Nat. Commun. 5 3732 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|