Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040301    DOI: 10.1088/1674-1056/adb263
GENERAL Prev   Next  

Uncertainties of the standard quantum teleportation channel

Zhihua Zhang(章志华)1, Zehao Guo(郭泽豪)1, and Zhipeng Qiu(邱志鹏)2,†
1 School of Cyber Science and Engineering, Nanjing University of Science and Technology, Jiangyin 214443, China;
2 School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  From the perspective of state-channel interaction, standard quantum teleportation can be viewed as a communication process characterized by both input and output, functioning as a quantum depolarizing channel. To achieve a precise quantification of the quantumness introduced by this channel, we examine its uncertainties, which encompass both state-dependent and state-independent uncertainties. Specifically, for qudit systems, we provide general formulas for these uncertainties. We analyze the uncertainties associated with standard quantum teleportation when induced by isotropic states, Werner states, and X-states, and we elucidate the correlation between these uncertainties and the parameters of the specific mixed states. Our findings demonstrate the validity of quantifying these uncertainties.
Keywords:  uncertainty      standard quantum teleportation channel      state-channel interaction  
Received:  19 November 2024      Revised:  22 January 2025      Accepted manuscript online:  05 February 2025
PACS:  03.67.-a (Quantum information)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12201300).
Corresponding Authors:  Zhipeng Qiu     E-mail:  nustqzp@njust.edu.cn

Cite this article: 

Zhihua Zhang(章志华), Zehao Guo(郭泽豪), and Zhipeng Qiu(邱志鹏) Uncertainties of the standard quantum teleportation channel 2025 Chin. Phys. B 34 040301

[1] Bennett C H, Brassard G, Crépeau C, et al. 1993 Phys. Rev. Lett. 70 016201
[2] Bouwmeester D, Pan J W, Mattle K, et al. 1997 Nature 390 575
[3] Pirandola S, Eisert J, Weedbrook C, et al. 2015 Nat. Photon. 9 641
[4] Lu C Y, Cao Y, Peng C Z, et al. 2022 Rev. Mod. Phys 94 035001
[5] Chen X, Zhang J H and Zhang F L 2022 Chin. Phys. B 31 030302
[6] Li H Y, Wei Y Z, et al. 2022 Chin. Phys. B 31 020302
[7] Liu X F, Li D F, et al. 2022 Chin. Phys. B 31 050301
[8] Hu X M, Guo Y, Liu B H, et al. 2023 Nat. Rev. Phys. 5 339
[9] Liu Z D, Siltanen O, Kuusela T, et al. 2024 Sci. Adv. 10 eadj3435
[10] Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288
[11] Bowen G and Bose S 2001 Phys. Rev. Lett. 87 267901
[12] Nielsen M A and Chuang I L 2001 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[13] Holevo A S and Giovannetti V 2012 Rep. Prog. Phys. 75 046001
[14] Caruso F, Giovannetti V, Lupo C, et al. 2014 Rev. Mod. Phys. 86 1203
[15] Li L, Bu K F and Liu Z W 2020 Phys. Rev. A 101 022335
[16] Liu Y and Yuan X 2020 Phys. Rev. Res. 2 012035
[17] Zhang J, He K, Zhang H, et al. 2023 Chin. Phys. B 32 090301
[18] Jebli L, Amzioug M, Ennadifi S E, et al. 2020 Chin. Phys. B 29 110301
[19] Luo S L, Fu S S and Li N 2010 Phys. Rev. A 82 052122
[20] Mani A and Karimipour V 2015 Phys. Rev. A 92 032331
[21] Bu K F, Kumar A, Zhang L, et al. 2017 Phys. Lett. A 381 1670
[22] Zanardi P, Styliaris G and Campos Venuti L 2017 Phys. Rev. A 95 052306
[23] Zhang L, Ma Z H, Chen Z H, et al. 2018 Quantum Inf. Process 17 1
[24] Styliaris G, Campos Venuti L and Zanardi P 2018 Phys. Rev. A 97 032304
[25] Yang S R and Yu C S 2023 Chin. Phys. B 32 040305
[26] Heisenberg W 1927 Zeitschrift für Physik 43 172
[27] Robertson H P 1929 Phys. Rev. 34 163
[28] Schröinger E 1930 Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 14 296
[29] Wigner E P and Yanase M M 1963 Proc. Natl. Acad. Sci. 49 910
[30] Luo S L 2005 Phys. Rev. A 72 042110
[31] Zhang F G and Li Y M 2018 Chin. Phys. B 27 090301
[32] Huang X F, Zhang T G and Jing N H 2020 Commun. Theor. Phys. 72 075101
[33] Wu Z Q, Huang H J, Fei S M, et al. 2020 Commun. Theor. Phys. 72 105102
[34] Zhang L, Huang J P, Wang J M, et al. 2022 Commun. Theor. Phys. 74 075102
[35] Xu C, Wu Z Q and Fei S M 2024 Commun. Theor. Phys. 76 035102
[36] Deutsch D 1983 Phys. Rev. Lett. 50 631
[37] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[38] Ming F, Wang D, Fan X G, et al. 2020 Phys. Rev. A 102 012206
[39] Xie B F, Ming F, Wang D, et al. 2021 Phys. Rev. A 104 062204
[40] Wu L, Ye L and Wang D 2022 Phys. Rev. A 102 062219
[41] Li L J, Ming F, Song X K, et al. 2022 Acta Phys. Sin. 71 070302 (in Chinese)
[42] Wang T Y and Wang D 2024 Phys. Lett. B 855 138876
[43] Dou Y N and Du H K 2013 J. Math. Phys. 54 103508
[44] Dou Y N and Du H K 2014 Int. J. Theor. Phys. 53 952
[45] Luo S L and Sun Y 2019 Commun. Theor. Phys. 71 1443
[46] Sun Y and Li N 2021 Quantum Inf. Process 20 25
[47] Zhang L M, Gao T and Yan F L 2021 Phys. Lett. A 387 127029
[48] Zhang J, Wei J N, Duan Z B, et al. 2021 Commun. Theor. Phys. 74 015101
[49] Li H, Gao T and Yan F L 2023 Phys. Scr. 98 015024
[50] Liu Y Z, Luo S L and Sun Y 2022 Theor. Math. Phys. 213 1613
[51] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[52] Fu S S, He J Y, Li X H, et al. 2023 Phys. Scr. 98 045114
[53] Horodecki M and Horodecki P 1999 Phys. Rev. A 59 4206
[54] Rains E M 1999 Phys. Rev. A 60 179
[55] Rains E M 2000 Phys. Rev. A 63 019902
[56] Bertlmann R A and Krammer P 2008 J. Phys. A Math. Theor. 41 235303
[57] Peters N A, Wei T C and Kwiat P G 2004 Phys. Rev. A 70 052309
[58] Yu C S, Yang S R and Guo B Q 2016 Quantum Inf. Process 15 3773
[59] Luo S L and Sun Y 2019 Phys. Lett. A 383 2869
[60] Zhang Q H and Fei S M 2024 J. Phys. A: Math. Theor. 57 235301
[61] Werner R F 1989 Phys. Rev. A 40 4277
[1] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[2] Thermodynamics in a quantum corrected Reissner—Nordström—AdS black hole and its GUP-corrections
Jian-Jun Song(宋建君) and Cheng-Zhou Liu(刘成周). Chin. Phys. B, 2024, 33(4): 040402.
[3] Generalized uncertainty principle from long-range kernel effects: The case of the Hawking black hole temperature
Rami Ahmad El-Nabulsi and Waranont Anukool. Chin. Phys. B, 2023, 32(9): 090303.
[4] Quantum correlation enhanced bound of the information exclusion principle
Jun Zhang(张钧), Kan He(贺衎), Hao Zhang(张昊), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(9): 090301.
[5] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[6] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[7] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[8] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[9] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[10] Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2021, 30(7): 070305.
[11] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[12] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[13] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[14] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[15] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
No Suggested Reading articles found!