Uncertainties of the standard quantum teleportation channel
Zhihua Zhang(章志华)1, Zehao Guo(郭泽豪)1, and Zhipeng Qiu(邱志鹏)2,†
1 School of Cyber Science and Engineering, Nanjing University of Science and Technology, Jiangyin 214443, China; 2 School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract From the perspective of state-channel interaction, standard quantum teleportation can be viewed as a communication process characterized by both input and output, functioning as a quantum depolarizing channel. To achieve a precise quantification of the quantumness introduced by this channel, we examine its uncertainties, which encompass both state-dependent and state-independent uncertainties. Specifically, for qudit systems, we provide general formulas for these uncertainties. We analyze the uncertainties associated with standard quantum teleportation when induced by isotropic states, Werner states, and X-states, and we elucidate the correlation between these uncertainties and the parameters of the specific mixed states. Our findings demonstrate the validity of quantifying these uncertainties.
Zhihua Zhang(章志华), Zehao Guo(郭泽豪), and Zhipeng Qiu(邱志鹏) Uncertainties of the standard quantum teleportation channel 2025 Chin. Phys. B 34 040301
[1] Bennett C H, Brassard G, Crépeau C, et al. 1993 Phys. Rev. Lett. 70 016201 [2] Bouwmeester D, Pan J W, Mattle K, et al. 1997 Nature 390 575 [3] Pirandola S, Eisert J, Weedbrook C, et al. 2015 Nat. Photon. 9 641 [4] Lu C Y, Cao Y, Peng C Z, et al. 2022 Rev. Mod. Phys 94 035001 [5] Chen X, Zhang J H and Zhang F L 2022 Chin. Phys. B 31 030302 [6] Li H Y, Wei Y Z, et al. 2022 Chin. Phys. B 31 020302 [7] Liu X F, Li D F, et al. 2022 Chin. Phys. B 31 050301 [8] Hu X M, Guo Y, Liu B H, et al. 2023 Nat. Rev. Phys. 5 339 [9] Liu Z D, Siltanen O, Kuusela T, et al. 2024 Sci. Adv. 10 eadj3435 [10] Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288 [11] Bowen G and Bose S 2001 Phys. Rev. Lett. 87 267901 [12] Nielsen M A and Chuang I L 2001 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [13] Holevo A S and Giovannetti V 2012 Rep. Prog. Phys. 75 046001 [14] Caruso F, Giovannetti V, Lupo C, et al. 2014 Rev. Mod. Phys. 86 1203 [15] Li L, Bu K F and Liu Z W 2020 Phys. Rev. A 101 022335 [16] Liu Y and Yuan X 2020 Phys. Rev. Res. 2 012035 [17] Zhang J, He K, Zhang H, et al. 2023 Chin. Phys. B 32 090301 [18] Jebli L, Amzioug M, Ennadifi S E, et al. 2020 Chin. Phys. B 29 110301 [19] Luo S L, Fu S S and Li N 2010 Phys. Rev. A 82 052122 [20] Mani A and Karimipour V 2015 Phys. Rev. A 92 032331 [21] Bu K F, Kumar A, Zhang L, et al. 2017 Phys. Lett. A 381 1670 [22] Zanardi P, Styliaris G and Campos Venuti L 2017 Phys. Rev. A 95 052306 [23] Zhang L, Ma Z H, Chen Z H, et al. 2018 Quantum Inf. Process 17 1 [24] Styliaris G, Campos Venuti L and Zanardi P 2018 Phys. Rev. A 97 032304 [25] Yang S R and Yu C S 2023 Chin. Phys. B 32 040305 [26] Heisenberg W 1927 Zeitschrift für Physik 43 172 [27] Robertson H P 1929 Phys. Rev. 34 163 [28] Schröinger E 1930 Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 14 296 [29] Wigner E P and Yanase M M 1963 Proc. Natl. Acad. Sci. 49 910 [30] Luo S L 2005 Phys. Rev. A 72 042110 [31] Zhang F G and Li Y M 2018 Chin. Phys. B 27 090301 [32] Huang X F, Zhang T G and Jing N H 2020 Commun. Theor. Phys. 72 075101 [33] Wu Z Q, Huang H J, Fei S M, et al. 2020 Commun. Theor. Phys. 72 105102 [34] Zhang L, Huang J P, Wang J M, et al. 2022 Commun. Theor. Phys. 74 075102 [35] Xu C, Wu Z Q and Fei S M 2024 Commun. Theor. Phys. 76 035102 [36] Deutsch D 1983 Phys. Rev. Lett. 50 631 [37] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103 [38] Ming F, Wang D, Fan X G, et al. 2020 Phys. Rev. A 102 012206 [39] Xie B F, Ming F, Wang D, et al. 2021 Phys. Rev. A 104 062204 [40] Wu L, Ye L and Wang D 2022 Phys. Rev. A 102 062219 [41] Li L J, Ming F, Song X K, et al. 2022 Acta Phys. Sin. 71 070302 (in Chinese) [42] Wang T Y and Wang D 2024 Phys. Lett. B 855 138876 [43] Dou Y N and Du H K 2013 J. Math. Phys. 54 103508 [44] Dou Y N and Du H K 2014 Int. J. Theor. Phys. 53 952 [45] Luo S L and Sun Y 2019 Commun. Theor. Phys. 71 1443 [46] Sun Y and Li N 2021 Quantum Inf. Process 20 25 [47] Zhang L M, Gao T and Yan F L 2021 Phys. Lett. A 387 127029 [48] Zhang J, Wei J N, Duan Z B, et al. 2021 Commun. Theor. Phys. 74 015101 [49] Li H, Gao T and Yan F L 2023 Phys. Scr. 98 015024 [50] Liu Y Z, Luo S L and Sun Y 2022 Theor. Math. Phys. 213 1613 [51] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672 [52] Fu S S, He J Y, Li X H, et al. 2023 Phys. Scr. 98 045114 [53] Horodecki M and Horodecki P 1999 Phys. Rev. A 59 4206 [54] Rains E M 1999 Phys. Rev. A 60 179 [55] Rains E M 2000 Phys. Rev. A 63 019902 [56] Bertlmann R A and Krammer P 2008 J. Phys. A Math. Theor. 41 235303 [57] Peters N A, Wei T C and Kwiat P G 2004 Phys. Rev. A 70 052309 [58] Yu C S, Yang S R and Guo B Q 2016 Quantum Inf. Process 15 3773 [59] Luo S L and Sun Y 2019 Phys. Lett. A 383 2869 [60] Zhang Q H and Fei S M 2024 J. Phys. A: Math. Theor. 57 235301 [61] Werner R F 1989 Phys. Rev. A 40 4277
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.