Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 045202    DOI: 10.1088/1674-1056/adacce
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas

Muhammad Asif Shakoori1,†, Misbah Khan2, Haipeng Li(李海鹏)1,‡, Aamir Shahzad3, Maogang He(何茂刚)4, and Syed Ali Raza5
1 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China;
2 Department of Refrigeration and Cryogenic Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
3 Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan;
4 Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education (MOE), Xi'an Jiaotong University, Xi'an 710049, China;
5 School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We employ the Green-Kubo (G-K) and Einstein relations to estimate the self-diffusion coefficients (denoted as DG and DE, respectively) in two-dimensional (2D) strongly coupled dusty plasmas (SC-DPs) via equilibrium molecular dynamics (EMD) simulations. DG and DE are computed for a broad domain of screening length (κ) and coupling parameters (Γ) along with different system sizes. It is observed that both DG and DE decrease linearly with increasing Γ in warm liquid states and increase with increasing κ. In cold liquid states, the Einstein relation accurately predicts DE in 2D SC-DPs because diffusion motion is close to normal diffusion, but the G-K relation provides overestimations of DG, because VACF indicates anomalous diffusion; thus, DG is not accurate. Our new simulation outcomes reveal that DG and DE remain independent of system sizes. Furthermore, our investigations demonstrate that at higher temperatures, DG and DE converge, suggesting diffusion motion close to normal diffusion, while at lower temperatures, these two values diverge. We find reasonable agreement by comparing current and existing numerical, theoretical and experimental data. Moreover, when normalizing diffusion coefficients by the Einstein frequency and testing against the universal temperature scaling law, DG deviates from theoretical curves at low temperatures and κ, whereas DE only disagrees with theory at very small κ (0.10). These findings provide valuable insight into diagnosing dust component parameters within 2D DP systems and contribute to the broader understanding of diffusion processes in DP environments.
Keywords:  dusty (complex) plasmas      self-diffusion coefficients      molecular dynamics simulation      Green-Kubo and Einstein relations  
Received:  25 November 2024      Revised:  13 January 2025      Accepted manuscript online:  22 January 2025
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.65.Yy (Molecular dynamics methods)  
  66.10.cg (Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.)  
Fund: Haipeng Li acknowledges the support of the Fundamental Research Funds for the Central Universities of China (Grant No. 2019ZDPY16).
Corresponding Authors:  Muhammad Asif Shakoori, Haipeng Li     E-mail:  asif-shakoori@cumt.edu.cn;haipli@cumt.edu.cn

Cite this article: 

Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas 2025 Chin. Phys. B 34 045202

[1] Ivlev A, Lowen H, Morfill G and Royall C P 2012 Complex Plasmas and Colloidal Dispersions Particle-Resolved Studies of Classical Liquids and Solids (Singapore: World Scientific)
[2] Grimes C C and Adams G 1979 Rev. Lett. 42 795
[3] Gammel P L, Bishop G J, Kwo J R, et al. 1987 Phys. Rev. Lett. 59 2592
[4] Murray C A, Sprenger W O and Wenk R A 1990 Phys. Rev. B 42 688
[5] Mitchell T B, Bollinger J J, Huang X P, et al. 1999 Phys. Plasmas 6 1751
[6] Fortov V E and Morfill G E 2009 Complex and Dusty Plasmas (CRC Press)
[7] Shakoori M A, Rahim I, Khan M, et al. 2024 Phys. Scr. 100 2
[8] Dietrich K, Renggli D, Zanini M, et al. 2017 New J. Phys. 19 065008
[9] Beckers J, Berndt J, Block D, et al. 2023 Phys. Plasmas 30 120601
[10] Nunomura S, Samsonov D, Zhdanov S and Morfill G 2006 Phys. Rev. Lett. 96 015003
[11] Hartmann P, Reyes J C, Kostadinova E G, et al. 2019 Phys. Rev. E 99 013203
[12] Vaulina O S and Vladimirov S V 2002 Phys. Plasmas 9 835
[13] Vaulina O S, Vladimirov S V, Petrov O F and Fortov V E 2004 Phys. Plasmas 11 3234
[14] Vaulina O S and Dranzhevski I E 2006 Phys. Scr. 73 577
[15] Vaulina O S, Adamovich X G, Petrov O F and Fortov V E 2008 Phys. Rev. E 77 066403
[16] Ohta H and Hamaguchi S 2000 Phys. Plasmas 7 4506
[17] Daligault J 2012 Phys. Rev. Lett. 108 225004
[18] Shakoori M A, He M and Shahzad A 2022 Eur. Phys. J. D 76 227
[19] Löwen H, Hansen J P and Roux J N 1991 Phys. Rev. A 44 1169
[20] Baalrud S D and Daligault J 2013 Phys. Rev. Lett. 110 235001
[21] Baalrud S D and Daligault J 2015 Phys. Rev. E 91 063107
[22] Khrapak S A, Vaulina O S and Morfill G E 2012 Phys. Plasmas 19 034503
[23] Rosenfeld Y, Nardi E and Zinamon Z 1995 Phys. Rev. Lett. 75 2490
[24] Daligault J 2006 Phys. Rev. Lett. 96 065003
[25] Vieillefosse P and Hansen J P 1975 Phys. Rev. A 12 1106
[26] Daligault J 2012 Phys. Rev. E 86 047401
[27] Shakoori M A, He M G, Shahzad A and Khan M 2022 J. Mol. Model 28 398
[28] Shakoori M A, He M G, Shahzad A and Khan M 2022 Plasma Phys. Reports 48 1023
[29] Shakoori M A, He M G, Shahzad A, Khan M and Zhang Y 2021 Emerging Development and application of low temperature plasma (IGI Global) p. 63
[30] Shakoori M A, He Maogang, Shahzad A and Khan M 2023 Phys. Scr. 98 015608
[31] Begum M and Das N 2016 IOSR Journal of Applied Physics 8 49
[32] Shakoori M A, He Maogang, Shahzad A, et al. 2022 Studies of Self Diffusion Coefficient in Electrorheological Complex Plasmas through Molecular Dynamics Simulations (Intech London)
[33] Strickler T S, Langin T K, McQuillen P, Daligault J and Killian T C 2016 Phys. Rev. X 6 021021
[34] Robbins M O, Kremer K and Grest G S 1988 J. Chem. Phys. 88 3286
[35] Rosenfeld Y, Nardi E and Zinamon Z 1995 Phys. Rev. Lett. 75 2490
[36] Daligault J 2006 Phys. Rev. Lett. 96 065003
[37] Liu Y, Liu B, Yang S Z andWang L 2002 J. Phys. A Math Gen 35 9535
[38] Liu B, Goree J and Vaulina O S 2006 Phys. Rev. Lett. 96 015005
[39] Liu B and Goree J 2007 S Phys. Rev. E 75 016405
[40] Liu B and Goree J 2008 Phys Rev. Lett. 100 055003
[41] Liu B, Goree J and Feng Y 2008 Phys. Rev. E 78 046403
[42] Liu B and Goree J 2014 Phys. Plasmas 21 063704
[43] Hou L J, Piel A and Shukla P K 2009 Phys. Rev. Lett. 102 085002
[44] Donkó Z, Goree J, Hartmann P and Liu B 2009 Phys. Rev. E 79 026401
[45] Shahzad A and He M G 2012 Phys. Scr. 86 015502
[46] Shahzad A, He M G and He K 2013 Phys. Scr. 87 035501
[47] Ghannad Z and Hakimi Pajouh H 2017 Phys. Lett. A 381 3952
[48] Ghannad Z 2019 Phys. Rev. E 100 033211
[49] Ghannad Z 2021 Phys. Plasmas. 28 043702
[50] Kostadinova E G, Banka R, Padgett J L, Liaw C D, Matthews L S and Hyde T W 2021 Phys. Plasmas 28 073705
[51] Sheridan T E 2016 Phys. Scr. 91 095603
[52] Wang H and Du J 2022 Chinese Journal of Physics 75 169
[53] Charan H, Ganesh R and Joy A 2014 J. Plasma Phys. 80 895
[54] Losseva T V, Popel S I, Yu M Y and Ma J X 2007 Phys. Rev. E 75 046403
[55] Gabdulin A Z, Ramazanov T S and Moldabekov Z A 2017 Contributions to Plasma Physics 57 458
[56] Rapaport D C 2002 The art of molecular dynamics simulation (Cambridge University Press)
[57] Busch J and Paschek D 2024 J. Phys. Chem. B 128 1040
[58] Mazars M 2007 J. Chem. Phys. 126 30
[59] Ott T and Bonitz M 2009 Phys. Rev. Lett. 103 195001
[60] Lu S, Wang K and Feng Y 2019 Phys. Plasmas 26 053704
[61] Begum M and Das N 2016 Eur. Phys. J. Plus 131 1
[62] Vaulina O S and Khrapak S A 2000 J. Exp. Theor. Phys. 90 287
[63] Hartmann P, Kalman G J, Donko Z and Kutasi K 2005 Phys. Rev. E 72 026409
[64] Dzhumagulova K N, Masheyeva R U, Ott T, et al. Phys. Rev. E 93 063209
[65] Haralson Z and Goree J 2017 Phys. Rev. Lett. 118 195001
[66] Liu Y, Blosczy K N and Block D 2023 Phys. Plasmas 30 043705
[1] Elastic–plastic behavior of nickel-based single crystal superalloys with γγ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[2] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[3] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[4] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[5] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[6] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[7] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[8] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[9] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[10] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[11] A molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures
Zihao Yu(于子皓), Hongyu Wang(王鸿宇), Ligang Sun(孙李刚), Zhihui Li(李志辉), and Linli Zhu(朱林利). Chin. Phys. B, 2024, 33(11): 116201.
[12] Unravelling biotoxicity of graphdiyne: Molecular dynamics simulation of the interaction between villin headpiece protein and graphdiyne
Bei-Wei Zhang(张贝薇), Bing-Quan Zhang(张兵权), Zhi-Gang Shao(邵志刚), and Xianqiu Wu(吴先球). Chin. Phys. B, 2024, 33(11): 118102.
[13] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[14] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[15] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
No Suggested Reading articles found!