Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 045201    DOI: 10.1088/1674-1056/adaccc
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

A program for modeling the RF wave propagation of ICRF antennas utilizing the finite element method

Lei-Yu Zhang(张雷宇), Yi-Xuan Li(李屹轩), Ming-Yue Han(韩明月), and Quan-Zhi Zhang(张权治)†
School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  Controlled nuclear fusion represents a significant solution for future clean energy, with ion cyclotron range of frequency (ICRF) heating emerging as one of the most promising technologies for heating the fusion plasma. This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver (ICRAEMS) code implemented on the MATLAB platform, which solves the electric field wave equation by using the finite element method, establishing perfectly matched layer (PML) boundary conditions, and post-processing the electromagnetic field data. This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology. Furthermore, this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.
Keywords:  ion cyclotron range of frequency (ICRF) antennas      finite element method      perfect matching layer  
Received:  01 November 2024      Revised:  15 January 2025      Accepted manuscript online:  22 January 2025
PACS:  52.25.Xz (Magnetized plasmas)  
  52.65.-y (Plasma simulation)  
  28.52.Av (Theory, design, and computerized simulation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National MCF Energy R&D Program (Grant No. 2022YFE03190100), the National Natural Science Foundation of China (Grant Nos. 12422513, 12105035, and U21A20438), and the Xiaomi Young Talents Program.
Corresponding Authors:  Quan-Zhi Zhang     E-mail:  qzzhang@dlut.edu.cn

Cite this article: 

Lei-Yu Zhang(张雷宇), Yi-Xuan Li(李屹轩), Ming-Yue Han(韩明月), and Quan-Zhi Zhang(张权治) A program for modeling the RF wave propagation of ICRF antennas utilizing the finite element method 2025 Chin. Phys. B 34 045201

[1] Zhang X J, Qin C M, Liu L N, Zhao Y P, Mao Y Z, Yang H, Lv B, Chang J F, Huang J, Wang L, Yuan S, Deng X, Chen G, Cheng Y, Ju S Q, Zhang K, Yuan J A, Li M H, Ding B J, Gong X Z, Wan B N, Song Y T, Li J G, Ai L, Ping L L and EAST team 2020 AIP Conf. Proc. 2254 030004
[2] Wang J H, Chen G, Zhao Y P, Mao Y Z, Yuan S, Zhang X J, Yang H, Qin C M, Cheng Y, Yang Y Q, Urbanczyk G, Liu L N and Cheng J 2018 Plasma Sci. Technol. 20 045603
[3] Liu L N, Zhang X J, Zhu Y B, Qin C M Qin, Zhao Y P, Yuan S, Mao Y Z, Li M H, Chen Y, Cheng J, Ping L L, Li H and Ai L 2019 Rev. Sci. Instrum. 90 063504
[4] Porkolab M, Becouletz A, Bonoliy P T, Gormezanox C, Kochk R, Majeski R J, Messiaenk A, Noterdaeme J M, Petty C, Pinsker R, Start D and Wilson R 1998 Plasma Phys. Control. Fusion 40 A35
[5] Petty C C, Baity F W, deGrassie J S, Mau T K, Pinsker R I, Porkolab M and Prater R 2001 Plasma Phys. Control. Fusion 43 1747
[6] Yin L, Yang C, Gong X Y, Lu X Q, Du D and Chen Y 2017 Phys. Plasmas 24 102502
[7] Hosea J, Bell R E, LeBlanc B P, Phillips C K, Taylor G, Valeo E, Wilson J R, Jaeger E F, Ryan P M, Wilgen J, Yuh H, Levinton F, Sabbagh S, Tritz K, Parker J, Bonoli P T, Harvey R and NSTX Team 2008 Phys. Plasmas 15 056104
[8] Pinsker R I, Porkolab M, Heidbrink W W, Luo Y, Petty C C, Prater R, Choi M, Schaffner D A, Baity F W, Fredd E, Hosea J C, Harvey R W, Smirnov A P, Murakami M and Van Zeeland M A 2006 Nucl. Fusion 46 S416
[9] Ono M 1995 Phys. Plasmas 2 4075
[10] Qin C M, Zhang X J, Zhao Y P, Wan B N, Braun F, Wang L, Yang Q X, Yuan S. and Cheng Y 2015 Plasma Sci. Technol. 17 167
[11] Pécoul S, Heurauxa S, Kochb R and Leclert G 2002 Computer Physics Communications 146 166
[12] Yang H, Zhang X J, Qin C M, Zhao Y P, Yuan S, Mao Y Z, Yang X, Li M H, Urbanczyk G, Wang M, Wang X J, Xu H D, Ding B J, Li Y C, Xu G S, Hu L Q, Ai L and Guo Y Y 2021 Nucl. Fusion 61 035001
[13] Clairet F, Colas L, Heuraux S and Lombard G 1993 Plasma Phys. Control. Fusion 35 1481
[14] Jacquet P, Bobkov V, Mayoral M L, Monakhov I, Noterdaeme J M, Scarabosio A, Stepanov I, Vrancken M, Wolfrum E and the ASDEX Upgrade team 2012 Nucl. Fusion 52 042002
[15] Carter M D, Wang C Y, Hogan J T, Harris J H, Hoffman D J, Rasmussen D A, Ryan P M, Stallings D S, Batchelor D B, Beaumont B, Hutter T and Saoutic B 1996 AIP Conf. Proc. 355 364
[16] Milanesio D, Helou W, Polli V, DurodiéF, Lamalle P, Louche F and Zhang W 2023 AIP Conf. Proc. 2984 060008
[17] Milanesio D and Maggiora R 2010 Nucl. Fusion 50 025007
[18] Milanesio, Helou W, Polli V, Durodié F, Lamalle P, Maquet V, Messiaen A, Tierens W and Zhang W 2023 Nucl. Fusion 63 046010
[19] Lancellottia V, Milanesio D, Maggiora R, Vecchi G and Kyrytsya V 2006 Nucl. Fusion 46 S476
[20] Usoltceva M, Tierens W, Kostic A, Noterdaeme J M, Ochoukov R and Zhang W 2016 AIP Conf. Proc. 2254 050003
[21] Usoltceva M, Ochoukov R, Tierens W, Kostic A, Crombé K, Heuraux S and Noterdaeme J M 2019 Plasma Phys. Control. Fusion 61 115011
[22] Tierens W, Milanesio D, Urbanczyk G, Helou W, Bobkov V, Noterdaeme J M, Colas L, Maggiora R, the ASDEX Upgrade team and the EUROfusion MST1 team 2019 Nucl. Fusion 59 046001
[23] Tierens W, Suárez López G, Otin R, Urbanczyk G, Colas L, Bilato R, Zhang W, Bobkov V and Noterdaeme J M 2020 AIP Conf. Proc. 2254 070005
[24] Jacquot J, Colas L, Clairet F, Goniche M, Heuraux S, Hillairet J, Lombard G and D Milanesio 2013 Plasma Phys. Control. Fusion 55 115004
[25] Lu L, Crombé K, Van Eester D, Colas L, Jacquot J and Heuraux S 2016 Plasma Phys. Control. Fusion 58 055001
[26] Yang H,Wu C F, Dong S, Zhao Y P, Zhang X J and Shang L 2016 Nucl. Sci. Tech. 27 46
[27] Li J H, Yang Q X, Song Y T, Yu C, Chen S L, Xu H and Du D 2021 Journal of Nuclear Science and Technology 58 837
[28] Du D 2015 Theoretical Analysis of The Interaction Between ICRH Antenna System and Plasma (Ph.D. Dissertation) (Hengyang: University of South China) (in Chinese)
[29] Berenger J P 1994 Journal of Computational Physics 114 185
[30] Colas L, Jacquot J, Hillairet J, HelouW, TierensW, Heuraux S, Faudot E, Lu L and Urbanczyk G 2019 Journal of Computational Physics 389 94
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[7] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[8] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[9] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[10] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[11] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[12] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[13] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[14] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[15] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
No Suggested Reading articles found!