Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 045203    DOI: 10.1088/1674-1056/adb9cb
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Precision assessment of micro-thruster performance: A comparative study of indium field emission electric propulsion thrust measurement methods with a force-feedback pendulum

Bo-Song Cai(蔡柏松)1, Yan Shen(沈岩)1,2, Yuan Zhong(钟源)3,4,†, Jian-Ping Liu(刘建平)3,‡, Yu-Qing Wang(王宇清)3, Zhu Li(李祝)3, Liang-Cheng Tu(涂良成)3, and Shan-Qing Yang(杨山清)3
1 School of Aeronautics and Astronautics, Sun Yat-Sen University (Shenzhen Campus), Shenzhen 518107, China;
2 Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, Shenzhen 518107, China;
3 MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
Abstract  Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters. This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propulsion (In-FEEP) micro-thruster using three methods based on a pendulum: direct thrust measurement, indirect plume momentum transfer and beam current diagnostics. The experimental setup utilized capacitive displacement sensors for force detection and a voice coil motor as a feedback actuator, achieving a resolution better than 0.1 μN. Key performance factors such as ionization and plume divergence of ejected charged particles were also examined. The study reveals that the high applied voltage induces significant electrostatic interference, becoming the dominant source of error in direct thrust measurements. Beam current diagnostics and indirect plume momentum measurements were conducted simultaneously, showing strong agreement within a deviation of less than 0.2 μN across the operational thrust range. The results from all three methods are consistent within the error margins, verifying the reliability of the indirect measurement approach and the theoretical thrust model based on the electrical parameters of In-FEEP.
Keywords:  micro-thruster      field emission      thrust stand      micro-thrust measurement      calibration      pendulum  
Received:  25 December 2024      Revised:  24 February 2025      Accepted manuscript online:  25 February 2025
PACS:  52.25.Tx (Emission, absorption, and scattering of particles)  
  52.75.Di (Ion and plasma propulsion)  
  79.70.+q (Field emission, ionization, evaporation, and desorption)  
  94.05.-a (Space plasma physics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFC2201001), the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302001), the National Natural Science Foundation of China (Grant Nos. 12105373, 12105374, and 11927812), and the Science and Technology Research Project of Jiangxi Provincial Department of Education (Grant No. GJJ2402105).
Corresponding Authors:  Yuan Zhong, Jian-Ping Liu     E-mail:  zhongy257@mail2.sysu.edu.cn;liujp39@mail.sysu.edu.cn

Cite this article: 

Bo-Song Cai(蔡柏松), Yan Shen(沈岩), Yuan Zhong(钟源), Jian-Ping Liu(刘建平), Yu-Qing Wang(王宇清), Zhu Li(李祝), Liang-Cheng Tu(涂良成), and Shan-Qing Yang(杨山清) Precision assessment of micro-thruster performance: A comparative study of indium field emission electric propulsion thrust measurement methods with a force-feedback pendulum 2025 Chin. Phys. B 34 045203

[1] Liu H, Niu X, Zeng M, Wang S S, Cui K and Yu D R 2022 Acta Astronaut. 193 496
[2] Gong Y G, Luo J and Wang B 2021 Nat. Astron. 5 881
[3] Genovese A, SteigerWand Tajmar M 2001 37th Joint Propulsion Conference and Exhibit (Reston, Virigina: American Institute of Aeronautics and Astronautics) p. 3788
[4] Scharlemann C, Genovese A, Schnitzer R, Buldrini N, Sattler P, Tajmar M, Killinger R and Früholz H 2009 31st International Electric Propulsion Conference
[5] Zhang Z, Zhang Z, Xu S T, Ling W Y L, Ren J X and Tang H B 2021 Aerosp. Sci. Technol. 110 106480
[6] Marhold K and Tajmar M 2005 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (Reston, Virigina: American Institute of Aeronautics and Astronautics) p. 4387
[7] Gessini P, Gabriel S B and Fearn D G 2005 IEPC Pap. 05
[8] Courtney D G, Dandavino S and Shea H 2016 J. Propuls. Power 32 392
[9] Cesare S, Musso F, D’Angelo F, Castorina G, Bisi M, Cordiale P, Canuto E, Nicolini D, Balaguer E and Frigot P 2009 31st International Electric Propulsion Conference 182
[10] Mühlich N S, Gerger J, Seifert B and Aumayr F 2022 Acta Astronaut. 197 107
[11] Ziemer J K 2001 27th International Electric Propulsion Conference 10
[12] Zou S, Cheng Z W T, Zhang X, Wang G F, Liu H F, Yang Z B, Zhong Y, Liu J P, Tu L C, Yang S Q and Li Z 2023 Phys. Rev. Appl. 19 024040
[13] Tajmar M, Genovese A and Steiger W 2004 J. Propuls. Power 20 211
[14] Mair G L R 1996 J. Phys. D: Appl. Phys. 29 2186
[15] Fehringer M, Ruedenauer F and Steiger W 1998 American Institute of Physics 456 207
[16] Tajmar M 2005 Appl. Phys. A 81 1447
[17] Tajmar M and Genovese A 2003 Appl. Phys. A Mater. Sci. Process. 76 1003
[18] Buldrini N, Bettiol L, Seifert B, Plesescu F, Amo J G del and Massotti L 2023 74th International Astronautical Congress (Austria)
[19] Kramer A, Bangert P and Schilling K 2020 Aerospace 7 98
[20] Tajmar M, SteigerWand Genovese A 2001 37th Joint Propulsion Conference and Exhibit (Reston, Virigina: American Institute of Aeronautics and Astronautics) p. 3790
[21] Mühlich N S, Aumayr F and Leiter H J 2022 Acta Astronautica 197 107
[22] Genovese A, Tajmar M, Buldrini N and Steiger W 2004 J. Propuls. Power 20 219
[23] Grubišić A N and Gabriel S B 2010 Meas. Sci. Technol. 21 105101
[24] Chakraborty S, Courtney D G and Shea H 2015 Rev. Sci. Instrum. 86 115109
[25] Zhang Z,Wang Y, Zhang G, Qi J, Liu J, Tang H and Cao J 2022 Vacuum 204 111384
[26] Weng H Y, Cai G B, Liu L H, Zheng H R, Zhang M X, Zhang B Y and He B J 2021 Meas. Sci. Technol. 32 085301
[27] Wang B, Yang W, Tang H, Li Z, Kitaeva A, Chen Z, Cao J, Herdrich G and Zhang K 2018 Meas. Sci. Technol. 29 075302
[28] Weng H Y, Cai G B, Liu L H, Zheng H R, Shang S F and He B J 2018 AIP Adv. 8 085027
[29] Chakraborty S 2015 EPFL Vol. 6645
[30] Williams J D, Johnson M L and Williams D D 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (Reston, Virigina: American Institute of Aeronautics and Astronautics)
[31] Yan A H, Appel B C and Gedrimas J G 2009 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition (Reston, Virigina: American Institute of Aeronautics and Astronautics) p. 212
[32] Zhong Y, Liu J P, Li Z, Wang Y Q, Li W, Zhang H Y, Zou S, Cai B S, Gong Y W, Tu L C and Yang S Q 2024 Measurement 224 113809
[1] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[2] Anti-Stokes/Stokes temperature calibration and its application in laser-heating diamond anvil cells
Minmin Zhao(赵旻旻), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), and Li Lei(雷力). Chin. Phys. B, 2023, 32(9): 090704.
[3] Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method
Min-Na Qiao(乔敏娜), Lu-Hua Liu(刘鲁华), Bo-Song Cai(蔡柏松), Ya-Ting Zhang(张雅婷),Qing-Lan Wang(王晴岚), Jia-Hao Xu(徐家豪), and Qi Liu(刘祺). Chin. Phys. B, 2023, 32(5): 050702.
[4] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[5] Upgrade of the magnetic diagnostic system for restart of HT-6M operation
Li-Xing Chen(陈力行), Biao Shen(沈飊), Da-Long Chen(陈大龙), Zheng-Ping Luo(罗正平),Zu-Chao Zhang(张祖超), Ying Chen(陈颖), Yong Wang(王勇), and Jin-Ping Qian(钱金平). Chin. Phys. B, 2022, 31(12): 125203.
[6] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[7] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[8] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[9] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
[10] A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment
Kun-Yang Wang(王坤阳), Jie Shao(邵杰), Li-Gang Shao(邵李刚), Jia-Jin Chen(陈家金), Gui-Shi Wang(王贵师), Kun Liu(刘琨), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2021, 30(5): 054203.
[11] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
[12] A novel multifunctional electronic calibration kit integrated by MEMS SPDT switches
Shan-Shan Wang(王姗姗), Qian-Nan Wu(吴倩楠), Yue-Sheng Gao(高跃升), Jian-Gang Yu(余建刚), Qian-Long Cao(曹钎龙), Lu-Lu Han(韩路路), and Meng-Wei Li(李孟委). Chin. Phys. B, 2021, 30(11): 118501.
[13] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[14] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
[15] Nonlinear dynamics of a classical rotating pendulum system with multiple excitations
Ning Han(韩宁) and Pei-Pei Lu(鲁佩佩). Chin. Phys. B, 2020, 29(11): 110502.
No Suggested Reading articles found!