Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046204    DOI: 10.1088/1674-1056/adb40f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Elastic–plastic behavior of nickel-based single crystal superalloys with γγ' phases based on molecular dynamics simulations

Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎)†, Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  The effects of temperature and Re content on the mechanical properties, dislocation morphology, and deformation mechanism of γ-γ phases nickel-based single crystal superalloys are investigated by using the molecular dynamics method through the model of γ-γ phases containing hole defect. The addition of Re makes the dislocation distribution tend towards the γ phase. The higher the Re content, the earlier the γ phase yields, while the γ phase yields later. Dislocation bends under the combined action of the applied force and the resistance of the Re atoms to form a bend point. The Re atoms are located at the bend points and strengthen the alloy by fixing the dislocation and preventing it from cutting the γ phase. Dislocations nucleate first in the γ phase, causing the γ phase to deform plastically before the γ phase. As the strain increases, the dislocation length first remains unchanged, then increases rapidly, and finally fluctuates and changes. The dislocation lengths in the γ phase are larger than those in the γ phase at different temperatures. The dislocation length shows a decreasing tendency with the increase of the temperature. Temperature can affect movement of the dislocation, and superalloys have different plastic deformation mechanisms at low, medium and high temperatures.
Keywords:  nickel-based single crystal superalloys      elastic-plastic behavior      dislocations      molecular dynamics simulation  
Received:  27 November 2024      Revised:  12 January 2025      Accepted manuscript online:  08 February 2025
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  62.20.F- (Deformation and plasticity)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the Xi’an Science and Technology Plan Project of Shaanxi Province of China (Grant No. 23GXFW0086).
Corresponding Authors:  Zhong-Kui Zhang     E-mail:  zkzhang@xupt.edu.cn

Cite this article: 

Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈) Elastic–plastic behavior of nickel-based single crystal superalloys with γγ' phases based on molecular dynamics simulations 2025 Chin. Phys. B 34 046204

[1] Liu L P, Cao J, Guo W and Wang C Y 2022 Chin. Phys. B 31 016105
[2] Liu C P, Zhang X N, Ge L, Liu S H, Wang C Y, Yu T, Zhang Y F and Zhang Z 2017 Mater. Sci. Eng. A 682 90
[3] Wen Z X, Liang JW, Liu C Y, Pei H Q,Wen S F and Yue Z F 2018 Int. J. Mech. Sci. 141 276
[4] Xiong X H, Quan D M, Dai P D, Wang Z P, Zhang Q X and Yue Z F 2015 Mater. Sci. Eng. A 636 608
[5] Caccuri V, Cormier J and Desmorat R 2017 Mater. Des. 131 487
[6] Wollgramm P, Buck H, Neuking K, Parsa A B, Schuwalow S, Rogal J, Drautz R and Eggeler G 2015 Mater. Sci. Eng. A 628 382
[7] Wu R H, Zaiser M and Sandfeld S 2017 Int. J. Plast 95 142
[8] Liu J L, Yu J J, Jin T, Sun X F, Guan H R and Hu Z Q 2011 Trans. Nonferrous Met. Soc. China 21 1518
[9] Shi Z X, Liu S Z, Yu J and Li J R 2015 J. Iron Steel Res. Int. 22 738
[10] Tan Z H, Wang X G, Du Y L, Duan T F, Yang Y H, Liu J L, Liu J D, Yang L, Li J G, Zhou Y Z and Sun X F 2020 Mater. Sci. Eng. A 776 138997
[11] Wang G L, Liu J L, Liu J D, Wang X G, Zhou Y Z, Sun X D, Zhang H F and Jin T 2017 Mater. Des. 130 131
[12] Lv P S, Liu L R, Zhao G Q, Guo S D, Zhou Z R, Zhao Y S and Zhang J 2022 J. Alloys Compd. 926 166819
[13] Wu R H, Yin Q, Wang J P, Mao Q Z, Zhang X and Wen Z X 2021 J. Alloys Compd. 862 158643
[14] Shang J, Yang F, Li C, Wei N and Tan X 2018 Comput. Mater. Sci. 148 200
[15] Yin Q, Wu R H, Wang J P, Chen S Q, Lian Y D and Wen Z X 2021 Mech. Mater. 160 103989
[16] Chen B, Wu W P, Chen M X and Guo Y F 2020 Comput. Mater. Sci. 185 109954
[17] Ding Q Q, Li S Z, Chen L Q, Han X D, Zhang Z, Yu Q and Li J X 2018 Acta Mater. 154 137
[18] Wu X X, Makineni S K, Liebscher C H, Dehm G, Mianroodi J R, Shanthraj P, Svendsen B, Buerger D, Eggeler G, Raabe D and Gault B 2020 Nat. Commun. 11 1076
[19] Yao X, Ding Q Q,Wei X,Wang J, Zhang Z and Bei H B 2022 J. Alloys Compd. 926 166835
[20] Zhang Z K and Yue Z F 2018 J. Alloys Compd. 746 84
[21] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F and Zhang Z F 2014 Mater. Sci. Eng. A 603 84
[22] Wu W P, Ding Z J, Chen B, Shen H F and Li Y L 2022 J. Mater. Res. Technol-JMRT 18 5144
[23] Liu L, Meng J, Liu J L, Zou M K, Zhang H F, Sun X D and Zhou Y Z 2019 J. Mater. Sci. Technol. 35 1917
[24] Zhang J C, Huang T W, Lu F, Cao K L, Wang D, Zhang J, Zhang J, Su H J and Liu L 2021 J. Alloys Compd. 876 160114
[25] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F and Zhang Z F 2014 Int. J. Fatigue 63 137
[26] Long H B, Liu Y N, Mao S C, Wei H, Zhang J X, Ma S Y, Deng Q S, Chen Y H, Zhang Z and Han X D 2018 Intermetallics 94 55
[27] Rae C M F and Reed R C 2001 Acta Mater. 49 4113
[28] Zhang Z K, Wen Z X and Yue Z F 2020 Appl. A-Mater. Sci. Process. 126 680
[29] Plimpton S 1995 J. Comput. Phys. 117 1
[30] Du J P, Wang C Y and Yu T 2013 Model. Simul. Mater. Sci. Eng. 21 015007
[31] Pun G P P and Mishin Y 2009 Philos. Mag. 89 3245
[32] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
[33] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007
[34] Yue E L, Yu T, Wang Y J and Wang C Y 2021 Intermetallics 132 107133
[35] Wang J P, Liang J W, Wen Z X and Yue Z F 2019 Comput. Mater. Sci. 160 245
[36] Xiong T W, Chen X P, Lin Y P, He X F, Yang W, Hu W Y, Gao F and Deng H Q 2023 Chin. Phys. B 32 020206
[37] Pettinari F, Douin J, Saada G, Caron P, Coujou A and Clément N 2002 Mater. Sci. Eng. A 325 511
[1] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[2] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[3] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[4] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[5] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[6] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[7] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[8] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[9] A molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures
Zihao Yu(于子皓), Hongyu Wang(王鸿宇), Ligang Sun(孙李刚), Zhihui Li(李志辉), and Linli Zhu(朱林利). Chin. Phys. B, 2024, 33(11): 116201.
[10] Unravelling biotoxicity of graphdiyne: Molecular dynamics simulation of the interaction between villin headpiece protein and graphdiyne
Bei-Wei Zhang(张贝薇), Bing-Quan Zhang(张兵权), Zhi-Gang Shao(邵志刚), and Xianqiu Wu(吴先球). Chin. Phys. B, 2024, 33(11): 118102.
[11] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[12] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[13] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[14] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[15] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
No Suggested Reading articles found!