Abstract The effects of temperature and Re content on the mechanical properties, dislocation morphology, and deformation mechanism of - phases nickel-based single crystal superalloys are investigated by using the molecular dynamics method through the model of - phases containing hole defect. The addition of Re makes the dislocation distribution tend towards the phase. The higher the Re content, the earlier the phase yields, while the phase yields later. Dislocation bends under the combined action of the applied force and the resistance of the Re atoms to form a bend point. The Re atoms are located at the bend points and strengthen the alloy by fixing the dislocation and preventing it from cutting the phase. Dislocations nucleate first in the phase, causing the phase to deform plastically before the phase. As the strain increases, the dislocation length first remains unchanged, then increases rapidly, and finally fluctuates and changes. The dislocation lengths in the phase are larger than those in the phase at different temperatures. The dislocation length shows a decreasing tendency with the increase of the temperature. Temperature can affect movement of the dislocation, and superalloys have different plastic deformation mechanisms at low, medium and high temperatures.
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈) Elastic–plastic behavior of nickel-based single crystal superalloys with γ–γ' phases based on molecular dynamics simulations 2025 Chin. Phys. B 34 046204
[1] Liu L P, Cao J, Guo W and Wang C Y 2022 Chin. Phys. B 31 016105 [2] Liu C P, Zhang X N, Ge L, Liu S H, Wang C Y, Yu T, Zhang Y F and Zhang Z 2017 Mater. Sci. Eng. A 682 90 [3] Wen Z X, Liang JW, Liu C Y, Pei H Q,Wen S F and Yue Z F 2018 Int. J. Mech. Sci. 141 276 [4] Xiong X H, Quan D M, Dai P D, Wang Z P, Zhang Q X and Yue Z F 2015 Mater. Sci. Eng. A 636 608 [5] Caccuri V, Cormier J and Desmorat R 2017 Mater. Des. 131 487 [6] Wollgramm P, Buck H, Neuking K, Parsa A B, Schuwalow S, Rogal J, Drautz R and Eggeler G 2015 Mater. Sci. Eng. A 628 382 [7] Wu R H, Zaiser M and Sandfeld S 2017 Int. J. Plast 95 142 [8] Liu J L, Yu J J, Jin T, Sun X F, Guan H R and Hu Z Q 2011 Trans. Nonferrous Met. Soc. China 21 1518 [9] Shi Z X, Liu S Z, Yu J and Li J R 2015 J. Iron Steel Res. Int. 22 738 [10] Tan Z H, Wang X G, Du Y L, Duan T F, Yang Y H, Liu J L, Liu J D, Yang L, Li J G, Zhou Y Z and Sun X F 2020 Mater. Sci. Eng. A 776 138997 [11] Wang G L, Liu J L, Liu J D, Wang X G, Zhou Y Z, Sun X D, Zhang H F and Jin T 2017 Mater. Des. 130 131 [12] Lv P S, Liu L R, Zhao G Q, Guo S D, Zhou Z R, Zhao Y S and Zhang J 2022 J. Alloys Compd. 926 166819 [13] Wu R H, Yin Q, Wang J P, Mao Q Z, Zhang X and Wen Z X 2021 J. Alloys Compd. 862 158643 [14] Shang J, Yang F, Li C, Wei N and Tan X 2018 Comput. Mater. Sci. 148 200 [15] Yin Q, Wu R H, Wang J P, Chen S Q, Lian Y D and Wen Z X 2021 Mech. Mater. 160 103989 [16] Chen B, Wu W P, Chen M X and Guo Y F 2020 Comput. Mater. Sci. 185 109954 [17] Ding Q Q, Li S Z, Chen L Q, Han X D, Zhang Z, Yu Q and Li J X 2018 Acta Mater. 154 137 [18] Wu X X, Makineni S K, Liebscher C H, Dehm G, Mianroodi J R, Shanthraj P, Svendsen B, Buerger D, Eggeler G, Raabe D and Gault B 2020 Nat. Commun. 11 1076 [19] Yao X, Ding Q Q,Wei X,Wang J, Zhang Z and Bei H B 2022 J. Alloys Compd. 926 166835 [20] Zhang Z K and Yue Z F 2018 J. Alloys Compd. 746 84 [21] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F and Zhang Z F 2014 Mater. Sci. Eng. A 603 84 [22] Wu W P, Ding Z J, Chen B, Shen H F and Li Y L 2022 J. Mater. Res. Technol-JMRT 18 5144 [23] Liu L, Meng J, Liu J L, Zou M K, Zhang H F, Sun X D and Zhou Y Z 2019 J. Mater. Sci. Technol. 35 1917 [24] Zhang J C, Huang T W, Lu F, Cao K L, Wang D, Zhang J, Zhang J, Su H J and Liu L 2021 J. Alloys Compd. 876 160114 [25] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F and Zhang Z F 2014 Int. J. Fatigue 63 137 [26] Long H B, Liu Y N, Mao S C, Wei H, Zhang J X, Ma S Y, Deng Q S, Chen Y H, Zhang Z and Han X D 2018 Intermetallics 94 55 [27] Rae C M F and Reed R C 2001 Acta Mater. 49 4113 [28] Zhang Z K, Wen Z X and Yue Z F 2020 Appl. A-Mater. Sci. Process. 126 680 [29] Plimpton S 1995 J. Comput. Phys. 117 1 [30] Du J P, Wang C Y and Yu T 2013 Model. Simul. Mater. Sci. Eng. 21 015007 [31] Pun G P P and Mishin Y 2009 Philos. Mag. 89 3245 [32] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012 [33] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007 [34] Yue E L, Yu T, Wang Y J and Wang C Y 2021 Intermetallics 132 107133 [35] Wang J P, Liang J W, Wen Z X and Yue Z F 2019 Comput. Mater. Sci. 160 245 [36] Xiong T W, Chen X P, Lin Y P, He X F, Yang W, Hu W Y, Gao F and Deng H Q 2023 Chin. Phys. B 32 020206 [37] Pettinari F, Douin J, Saada G, Caron P, Coujou A and Clément N 2002 Mater. Sci. Eng. A 325 511
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.