Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 018101    DOI: 10.1088/1674-1056/ad925e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations

Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生)†
The Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  Uranium-molybdenum (U-Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of $\gamma $-phase U-Mo alloys using molecular dynamics (MD) simulations. In the slip model, the generalized stacking fault energy (GSFE) and the modified Peierls-Nabarro (P-N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy (GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}$\langle 111\rangle$ slip system is preferentially activated, while in the {112}$\langle 111\rangle$ system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid $\gamma \to \alpha "$ transitions, thereby maintaining a higher proportion of $\gamma $-phase U-Mo alloys for practical applications.
Keywords:  U-Mo alloy      molecular dynamics simulation      plastic deformation mechanism      dislocation slip      twin formation  
Received:  25 July 2024      Revised:  19 September 2024      Accepted manuscript online:  14 November 2024
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  81.40.Lm (Deformation, plasticity, and creep)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  61.72.Mm (Grain and twin boundaries)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52271105).
Corresponding Authors:  Wen-Sheng Lai     E-mail:  wslai@tsinghua.edu.cn

Cite this article: 

Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生) Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations 2025 Chin. Phys. B 34 018101

[1] Kim Y S and Hofman G L 2011 J. Nucl. Mater. 419 291
[2] Sinha V P, Hegde P V, Prasad G J, Dey G K and Kamath H S 2010 J. Alloys Compd. 506 253
[3] Burkes D E, Fielding R S, Porter D L, Crawford D C and Meyer M K 2009 J. Nucl. Mater. 389 458
[4] Neogy S, Saify M T, Jha S K, Srivastava D, Hussain M M, Dey G K and Singh R P 2012 J. Nucl. Mater. 422 77
[5] Lopes D A, Restivo T A G and Padilha A F 2013 J. Nucl. Mater. 440 304
[6] Meyer M K, Gan J, Jue J F, Keiser D D, Perez E, Robinson A, Wachs D M, Woolstenhulme N, Hofman G L and Kim Y S 2014 Nucl. Eng. Technol. 46 169
[7] Kim Y S, Hofman G L, Yacout A M and Kim T K 2013 J. Nucl. Mater. 441 520
[8] Kaity S, Banerjee J, Parida S C, Behere P G and Bhasin V 2020 J. Nucl. Mater. 532 152046
[9] Morais N W S and Schön C G 2021 J. Alloys Compd. 871 159501
[10] Park J M, Ryu H J, Lee G G, Kim H S, Lee Y S, Kim C K and Hofman G L 2006 IAEA 37 45
[11] Eriksson N 2018 Metall. Mater. Trans. A 50 72
[12] Hills R F, Butcher B R and Heywood J A 1961 J. Less-Common Met. 3 155
[13] Woolum C 2014 Master’s Thesis (Texas A & M University) p. 60
[14] Vatulin A V, Morozov A V, Suprun V B, Petrov Y I and Trifonov Y I 2004 Met. Sci. Heat Treat. 46 484
[15] Kapoor R, Behera A N, Chakravartty J K and Hussain M M 2015 Metall. Mater. Trans. A 46 251
[16] Grilli N, Tarleton E, Edmondson P D, Gussev M N and Cocks A C F 2020 Phys. Rev. Mater. 4 043605
[17] Paidar V 1983 Philos. Mag. A 48 231
[18] Kibey S, Liu J B, Johnson D D and Sehitoglu H 2007 Acta. Mater. 55 6843
[19] Ostapovets A and Paidar V 2008 Mater. Sci. Forum 567-568 69
[20] Ojha A, Sehitoglu H, Patriarca L and Maier H J 2014 Model. Simul. Mater. Sc. 22 075010
[21] Kivshar Y S and Campbell D K 1993 Phys. Rev. E 48 3077
[22] Ren Q, Joos B and Duesbery M S 1995 Phys. Rev. B 52 13223
[23] Pellegrini Y P 2010 Phys. Rev. B 81 024101
[24] Pan J S, Tong J M and Tian M B 1998 Fundamentals of Materials Science (Tsinghua University) p. 258
[25] Yu Z T 2021 Master’s Thesis (Tsinghua University) p. 53
[26] Starikov S V, Kolotova L N, Kuksin A Y, Smirnova D E and Tseplyaev V I 2018 J. Nucl. Mater. 499 451
[27] Jia J P, Huang H, Wang Z G, Zhang P C and Wu S 2013 Rare Met. Mater. Eng. 8 4
[28] Li S Z, Ding X D, Deng J K, Lookman T, Li J, Ren X B, Sun J and Saxena A 2010 Phys. Rev. B 82 205435
[29] Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
[1] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[2] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[3] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[4] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[5] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[6] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[7] A molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures
Zihao Yu(于子皓), Hongyu Wang(王鸿宇), Ligang Sun(孙李刚), Zhihui Li(李志辉), and Linli Zhu(朱林利). Chin. Phys. B, 2024, 33(11): 116201.
[8] Unravelling biotoxicity of graphdiyne: Molecular dynamics simulation of the interaction between villin headpiece protein and graphdiyne
Bei-Wei Zhang(张贝薇), Bing-Quan Zhang(张兵权), Zhi-Gang Shao(邵志刚), and Xianqiu Wu(吴先球). Chin. Phys. B, 2024, 33(11): 118102.
[9] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[10] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[11] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[12] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[13] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[14] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[15] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
No Suggested Reading articles found!