Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027302    DOI: 10.1088/1674-1056/ad925a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-throughput screening and evaluation of double-linker metal-organic frameworks for CO2/H2 adsorption and separation

Ji-Long Huang(黄纪龙)1, Xiu-Ying Liu(刘秀英)1,2,†, Hao Chen(陈浩)1, Xiao-Dong Li(李晓东)1,2, and Jing-Xin Yu(于景新)1,2
1 School of Physics, Henan University of Technology, Zhengzhou 450001, China;
2 R&D Center for Advanced Energy Materials, Henan University of Technology, Zhengzhou 450001, China
Abstract  The capture of CO$_{2}$ from CO$_{2}$/H$_{2}$ gas mixtures in syngas is a crucial issue for hydrogen production from steam methane reforming in industry, as the presence of CO$_{2}$ directly affects the purity of H$_{2}$. A combination of a high-throughput screening method and grand canonical Monte Carlo simulation was utilized to evaluate and screen 1725 metal-organic frameworks (MOFs) in detail as a means of determining their adsorption performance for CO$_{2}$/H$_{2}$ gas mixtures. The adsorption and separation performance of double-linker MOFs was comprehensively evaluated using eight evaluation indicators, namely, the largest cavity diameter, accessible surface area, pore occupied accessible volume, porosity, adsorption selectivity, working capacity, adsorbent performance score and percent regeneration. Six optimal performance frameworks were screened to further study their single-component adsorption and binary competitive adsorption of CO$_{2}$/H$_{2}$ respectively. The CO$_{2}$ adsorption selectivity at different CO$_{2}$/H$_{2}$ feed ratios was also evaluated, which indicated their excellent adsorption and separation performance. The microscopic adsorption mechanisms for CO$_{2}$ and H$_{2}$ at the molecular level were investigated by analyzing the radial distribution function and density distribution. This study may provide directional guidance and reference for subsequent experiments on the adsorption and separation of CO$_{2}$/H$_{2}$.
Keywords:  metal-organic framework      adsorption      separation      high-throughput screening      grand canonical Monte Carlo simulation  
Received:  08 September 2024      Revised:  05 November 2024      Accepted manuscript online:  14 November 2024
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  36.40.-c (Atomic and molecular clusters)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11404094, and 11504088) and Science and Technology Research Project of Henan Science and Technology Department (Grant No. 182102410076).
Corresponding Authors:  Xiu-Ying Liu     E-mail:  liuxiuyingzx@126.com

Cite this article: 

Ji-Long Huang(黄纪龙), Xiu-Ying Liu(刘秀英), Hao Chen(陈浩), Xiao-Dong Li(李晓东), and Jing-Xin Yu(于景新) High-throughput screening and evaluation of double-linker metal-organic frameworks for CO2/H2 adsorption and separation 2025 Chin. Phys. B 34 027302

[1] Zhang M M, Zhang F, Wu Q, Huang X, Yan W, Zhao C M, Chen W, Yang Z H, Wang Y H and Wu T T 2023 Chin. Phys. B 32 066803
[2] Hwang J J 2013 Renewable Sustainable Energy Rev. 19 220
[3] Pei P, Wang M, Chen D, Ren P and Zhang L 2020 Prog. Nat. Sci.: Mater. Int. 30 751
[4] Hori T, Ma Q, Kobayashi K, Nagao M, Teranishi S and Hibino T 2019 Int. J. Hydrogen Energy 44 2454
[5] Majeed H and Svendsen H F 2018 Chem. Eng. J. (Amsterdam, Neth.) 333 636
[6] Majeed H and Svendsen H F 2018 Int. J. Greenhouse Gas Control 74 282
[7] Meng F, Meng Y, Ju T, Han S, Lin L and Jiang J 2022 Renewable Sustainable Energy Rev. 168 112902
[8] Dutta A, Pan Y, Liu J Q and Kumar A 2021 Coord. Chem. Rev. 445 214074
[9] Liu Q, Yu J and Hu J 2024 Chin. Phys. B 33 017204
[10] Li Y Z,Wang G D, Ma L N, Hou L,Wang Y Y and Zhu Z H 2021 ACS Appl. Mater. Interfaces 13 4102
[11] Gu Y M, Yuan Y Y, Qadir S, Yuan Z S, Zhao S S, Sun T J, Liu X W and Wang S D 2022 Chem. Eng. J. 433 134447
[12] Singh A and Kayal S 2022 Prot. Met. Phys. Chem. Surf. 58 478
[13] Soares E d A, Barreto Jr A G and Tavares FW2023 Fluid Phase Equilib. 574 113887
[14] Anastasiou I, Van Velthoven N, Tomarelli E, Lombi A, Lanari D, Liu P, Bals S, De Vos D E and Vaccaro L 2020 ChemSusChem 13 2786
[15] Dou Y, Yang L, Qin L, Dong Y, Zhou Z and Zhang D 2021 J. Solid State Chem. 293 121820
[16] Wu L, Zhang X F, Li Z Q and Wu F 2016 Inorg. Chem. Commun. 74 22
[17] Liu W, Xie J, Zhang L, Silver M A and Wang S 2018 Dalton Trans. 47 649
[18] Hosseinzadeh B and Rodriguez-Mendez M L 2023 Chemosensors 11 357
[19] Feng A,Wang Y, Ding J, Xu R and Li X 2021 Curr. Drug Deliv. 18 297
[20] Li C, Chen C, Wei Y, Tan M, Zhai S, Zhao J, Wang L and Dai T 2021 Drug Delivery 28 2594
[21] Zong Z, Tian G,Wang J, Fan C, Yang F and Guo F 2022 Pharmaceutics 14 2790
[22] Mehtab T, Yasin G, Arif M, Shakeel M, Korai R M, Nadeem M, Muhammad N and Lu X 2019 J. Energy Storage 21 632
[23] ZhaoW, Zeng Y, Zhao Y andWu X 2023 J. Energy Storage 62 106934
[24] Zhao G, Xie J, Zhou K, Xing B, Wang X, Tian F, He X and Zhang L 2022 Chin. Phys. B 31 037104
[25] Qiao Z, Zhang K and Jiang J 2016 J. Mater. Chem. A 4 2105
[26] Avci G, Velioglu S and Keskin S 2018 ACS Appl. Mater. Interfaces 10 33693
[27] Li M, Cai W, Wang C and Wu X 2022 Phys. Chem. Chem. Phys. 24 18764
[28] Ryu D and Kim J 2023 J. Phys. Chem. C 127 10384
[29] Willems T F, Rycroft C H, Kazi M, Meza J C and Haranczyk M 2012 Microporous Mesoporous Mater. 149 134
[30] Mayo S L, Olafson B D and Goddard W A 1990 J. Phys. Chem. 94 8897
[31] Rappe A K, Casewit C J, Colwell K S, Goddard W A, III and Skiff W M 1992 J. Am. Chem. Soc. 114 10024
[32] Zhou F, Chen Y, Zhang Z, Gu Z, Sun Y, Tong M, Yang Q, DongW, Pan Y, Qiao Z and Zhong C 2024 AIChE J. 70 e18455
[33] Xu H, Mguni L L, Shan Y, Jewell L L, Hildebrandt D, Yao Y and Liu X 2025 Sep. Purif. Technol. 354 128927
[34] Dokur D and Keskin S 2018 Ind. Eng. Chem. Res. 57 2298
[35] Morales A D C, Economou I G, Peters C J and Siepmann J I 2013 Mol. Simul. 39 1135
[36] Jones J E 1924 Proc. R. Soc. London A 106 441
[37] Yuan J P, Liu X Y, Li X D and Yu J X 2020 Mater. Today Commun. 26 101987
[38] Liu X Y, He J, Yu J X, Li Z X and Fan Z Q 2014 Chin. Phys. B 23 067303
[39] Vlugt T, García-Pérez E, Dubbeldam D, Ban S and Calero S 2008 J. Chem. Theory Comput. 4 1107
[40] Jiang Y C, Li G X, Yu G F, JuanW, Huang S L and Xu G L 2021 Chin. Phys. B 30 118105
[41] Liu X, Liu J, Mao S, Xu H,Wang Y, TaoWand Li Z 2024 Fluid Phase Equilib. 581 114073
[42] Dubbeldam D, Torres-Knoop A and Walton K S 2013 Mol. Simul. 39 1253
[43] Dubbeldam D, Calero S, Ellis D E and Snurr R Q 2016 Mol. Simul. 42 81
[44] Yuan J P, Liu X Y, Li X D and Yu J X 2021 Acta Phys. Sin. 70 156801 (in Chinese)
[45] Yuan J P, Liu X Y, Wang H and Li X D 2023 Comput. Mater. Sci. 216 111872
[46] Liu X Y, Chen H, Yuan J P, Huang J l, Dong L X and Xin Y J 2023 Z. Naturforsch. A: Phys. Sci. 78 863
[47] Mert H, Deniz C U and Baykasoglu C 2023 J. Mol. Model. 29 315
[48] Altundal O F, Altintas C and Keskin S 2020 J. Mater. Chem. A 8 14609
[49] Cen X, Sun Y, Yu C, Geng C, Gu Z, Ao D, Zhang Z, Qiao Z and Zhong C 2024 Sep. Purif. Technol. 334 125995
[1] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[2] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[3] Photophysics of metal-organic frameworks: A brief overview
Qingshuo Liu(刘晴硕), Junhong Yu(余俊宏), and Jianbo Hu(胡建波). Chin. Phys. B, 2024, 33(1): 017204.
[4] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[5] A first-principles study on remote van der Waals epitaxy through a graphene monolayer on semiconductor substrates
Rui Hou(侯锐) and Shenyuan Yang(杨身园). Chin. Phys. B, 2023, 32(6): 066801.
[6] Effects of O2 adsorption on secondary electron emission properties
Zhao-Lun Yang(杨兆伦), Jing Yang(杨晶), Yun He(何鋆), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Na Zhang(张娜), Ze-Yu Chen(陈泽煜), Guang-Hui Miao(苗光辉), Yu-Ting Zhang(张雨婷), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2023, 32(4): 047901.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[9] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[10] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[11] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[12] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[13] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[14] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[15] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
No Suggested Reading articles found!