Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077403    DOI: 10.1088/1674-1056/ad4cdc
RAPID COMMUNICATION Prev   Next  

Moiré superlattices arising from growth induced by screw dislocations in layered materials

Fuyu Tian(田伏钰)1, Muhammad Faizan1, Xin He(贺欣)1, Yuanhui Sun(孙远慧)2,†, and Lijun Zhang(张立军)1,‡
1 State Key Laboratory of Integrated Optoelectronics Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China;
2 Suzhou Laboratory, Suzhou 215123, China
Abstract  Moiré superlattices (MSLs) are modulated structures produced from homogeneous or heterogeneous two-dimensional layers stacked with a twist angle and/or lattice mismatch. Enriching the methods for fabricating MSL and realizing the unique emergent properties are key challenges in its investigation. Here we recommend that the spiral dislocation driven growth is another optional method for the preparation of high quality MSL samples. The spiral structure stabilizes the constant out-of-plane lattice distance, causing the variations in electronic and optical properties. Taking SnS$_{2}$ MSL as an example, we find prominent properties including large band gap reduction ($\sim 0.4 $ eV) and enhanced optical activity. First-principles calculations reveal that these unusual properties can be ascribed to the locally enhanced interlayer interaction associated with the Moiré potential modulation. We believe that the spiral dislocation driven growth would be a powerful method to expand the MSL family and broaden their scope of application.
Keywords:  Moiré superlattices      interlayer interaction      spiral dislocation      layered materials  
Received:  26 April 2024      Revised:  16 May 2024      Accepted manuscript online:  17 May 2024
PACS:  74.78.Fk (Multilayers, superlattices, heterostructures)  
  68.65.Cd (Superlattices)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402500) and the National Natural Science Foundation of China (Grant No. 62125402).
Corresponding Authors:  Yuanhui Sun, Lijun Zhang     E-mail:  sunyh@szlab.ac.cn;lijun_zhang@jlu.edu.cn

Cite this article: 

Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军) Moiré superlattices arising from growth induced by screw dislocations in layered materials 2024 Chin. Phys. B 33 077403

[1] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[2] Yin X, Ye Z, Chenet D A, Ye Y, O’Brien K, Hone J C and Zhang X 2014 Science 344 488
[3] Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A and Xu X X 2015 Nature 520 69
[4] Yang T, Zheng B, Wang Z, Xu T, Pan C, Zou J, Zhang X, Qi Z, Liu H, Feng Y, Hu W, Miao F, Sun L, Duan X and Pan A 2017 Nat. Commun. 8 1906
[5] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[6] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A and Sutter P 2014 ACS Nano 8 10743
[7] Geim A K and Grigorieva I V 2013 Nature 499 419
[8] Novoselov K S, Mishchenko A, Carvalho A and Neto A H C 2016 Science 353 aac9439
[9] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2009 Science 324 924
[10] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802
[11] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109
[12] MacDonald A H and Bistritzer R 2011 Nature 474 453
[1] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[2] Yin X, Ye Z, Chenet D A, Ye Y, O’Brien K, Hone J C and Zhang X 2014 Science 344 488
[3] Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A and Xu X X 2015 Nature 520 69
[4] Yang T, Zheng B, Wang Z, Xu T, Pan C, Zou J, Zhang X, Qi Z, Liu H, Feng Y, Hu W, Miao F, Sun L, Duan X and Pan A 2017 Nat. Commun. 8 1906
[5] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[6] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A and Sutter P 2014 ACS Nano 8 10743
[7] Geim A K and Grigorieva I V 2013 Nature 499 419
[8] Novoselov K S, Mishchenko A, Carvalho A and Neto A H C 2016 Science 353 aac9439
[9] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2009 Science 324 924
[10] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802
[11] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109
[12] MacDonald A H and Bistritzer R 2011 Nature 474 453
[13] Yu G L, Gorbachev R V, Tu J S, Kretinin A V, Cao Y, Jalil R, Withers F, Ponomarenko L A, Piot B A, Potemski M, Elias D C, Chen X, Watanabe K, Taniguchi T, Grigorieva I V, Novoselov K S, Fal’ko V I, Geim A K and Mishchenko A 2014 Nat. Phys. 10 525
[14] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardi ere G, Ugeda M M, Magaud L, Gómez-Rodríuez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
[15] Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J and Zhou S 2018 Proc. Natl. Acad. Sci. USA 115 6928
[16] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[17] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jacquod P, Jarillo-Herrero P and LeRoy B J 2012 Nat. Phys. 8 382
[18] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F and Ajayan P M 2010 Nat. Mater. 9 430
[19] Chen Z G, Shi Z, Yang W, Lu X, Lai Y, Yan H, Wang F, Zhang G and Li Z 2014 Nat. Commun. 5 4461
[20] Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W and Ahn J R 2018 Science 361 782
[21] Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D and Dean C R 2018 Nature 557 404
[22] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[23] Jat M K, Tiwari P, Bajaj R, Shitut I, Mandal S, Watanabe K, Taniguchi T, Krishnamurthy H R, Jain M and Bid A 2024 Nat. Commun. 15 2335
[24] Zheng H H, Guo H L, Chen S L, Wu B, Li S F, He J, Liu Z W, Lu G, Duan X D, Pan A and Liu Y P 2023 Adv. Mater. 35 2210909
[25] Liu Y P, Zeng C, Yu J, Zhong J H, Li B, Zhang Z W, Liu Z W, Wang Z M, Pan A and Duan X D 2021 Chem. Soc. Rev. 50 6401
[26] Zheng H H, Wu B, Li S F, Ding J N, He J, Liu Z W, Wang C T, Wang J T, Pan A and Liu Y P 2023 Light-Sci. Appl. 12 117
[27] Ponomarenko L, Gorbachev R, Yu G, Elias D, Jalil R, Patel A, Mishchenko A, Mayorov A, Woods C and Wallbank J 2013 Nature 497 594
[28] Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Voisin C, Plaçais B, Zhang Y and Zhang G 2016 Nano Lett. 16 2387
[29] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2012 Nature 497 598
[30] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R and Javey A 2014 Proc. Natl. Acad. Sci. USA 111 6198
[31] Tong Q, Yu H, Zhu Q, Wang Y, Xu X and Yao W 2016 Nat. Phys. 13 356
[32] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382
[33] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K L 2011 Nat. Phys. 7 693
[34] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and LeRoy B J 2011 Nat. Mater. 10 282
[35] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[36] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G 2013 Nat. Mater. 12 792
[37] Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S and Robinson J A 2015 Nat. Commun. 6 7311
[38] Zhang C, Chu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y and Shih C K 2017 Sci. Adv. 3 1601459
[39] Liu L, Sun Y, Cui X, Qi K, He X, Bao Q, Ma W, Lu J, Fang H, Zhang P, Zheng L, Yu L, Singh D J, Xiong Q, Zhang L and Zheng W 2019 Nat. Commun. 10 4472
[40] Liu J, Huang Q, Qian Y, Huang Z, Lai F, Lin L, Guo M, Zheng W and Qu Y 2016 Cryst. Growth Des. 16 2052
[41] Zhuang A, Li J J, Wang Y C, Wen X, Lin Y, Xiang B, Wang X and Zeng J 2014 Angew. Chem. 53 6425
[42] Fan X, Jiang Y, Zhuang X, Liu H, Xu T, Zheng W, Fan P, Li H, Wu X, Zhu X, Zhang Q, Zhou H, Hu W, Wang X, Sun L, Duan X and Pan A 2017 ACS Nano 11 4892
[43] Zhang L, Liu K, Wong A B, Kim J, Hong X, Liu C, Cao T, Louie S G, Wang F and Yang P 2014 Nano Lett. 14 6418
[44] Shearer M J, Samad L, Zhang Y, Zhao Y, Puretzky A, Eliceiri K W, Wright J C, Hamers R J and Jin S 2017 J. Am. Chem. Soc. 139 3496
[45] Yan C, Gan L, Zhou X, Guo J, Huang W, Huang J, Jin B, Xiong J, Zhai T and Li Y 2017 Adv. Funct. Mater. 27 1702918
[46] Xia J, Zhu D, Wang L, Huang B, Huang X and Meng X M 2015 Adv. Funct. Mater. 25 4255
[47] Madoune Y, Yang D B, Ahmed Y, Al-Makeen M M and Huang H 2023 Front. Chem. 11 1132567
[48] Ahn J, Ha S, Choi J, Yeom D and Yoo Y 2023 Adv. Optical Mater. 11 2203116
[49] Ouyang D C, Zhang N, Li Y and Zhai T Y 2023 Adv. Funct. Mater. 33 2208321
[50] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H and Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364
[51] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[52] Wu F, Lovorn T, Tutuc E and MacDonald A H 2018 Phys. Rev. Lett. 121 026402
[53] Wu F, Lovorn T and MacDonald A H 2017 Phys. Rev. Lett. 118 147401
[54] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405
[55] Kang J, Li J, Li S S, Xia J B and Wang L W 2013 Nano Lett. 13 5485
[56] Chen M, Guo G C and He L 2010 J. Phys.: Condens. Matter 22 445501
[57] Li P, Liu X, Chen M, Lin P, Ren X, Lin L, Yang C and He L 2016 Comp. Mater. Sci. 112 503
[58] Ma J and Wang L W 2015 Nano Lett. 15 248
[59] Yu H, Liu G B, Tang J, Xu X and Yao W 2017 Sci. Adv. 3 e1701696
[60] Wu M, Qian X and Li J 2014 Nano Lett. 14 5350
[61] Huder L, Artaud A, Le Quang T, de Laissardiere G T, Jansen A G M, Lapertot G, Chapelier C and Renard V T 2018 Phys. Rev. Lett. 120 156405
[62] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[63] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[64] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[65] Klimeš J, Bowler D R and Michaelides A 2010 J Phys. Condens. Matter 22 022201
[66] Sun Y, Cheng H, Gao S, Sun Z, Liu Q, Liu Q, Lei F, Yao T, He J, Wei S and Xie Y 2012 Angew. Chem. Inter. Edit. 51 8727
[67] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J Chem. Phys. 125 224106
[1] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[2] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
No Suggested Reading articles found!