Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020302    DOI: 10.1088/1674-1056/ad99cb
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Improved reference-frame-independent quantum key distribution with intensity fluctuations

Zi-Qi Chen(陈子骐)1,2, Hao-Bing Sun(孙昊冰)1,2, Ming-Shuo Sun(孙铭烁)1,2, and Qin Wang(王琴)1,2,†
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Broadband Wireless Communication and Sensor Network Technology, Key Laboratory of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Reference-frame-independent quantum key distribution (RFI-QKD) can avoid real-time calibration operation of reference frames and improve the efficiency of the communication process. However, due to imperfections of optical devices, there will inevitably exist intensity fluctuations in the source side of the QKD system, which will affect the final secure key rate. To reduce the influence of intensity fluctuations, an improved 3-intensity RFI-QKD scheme is proposed in this paper. After considering statistical fluctuations and implementing global parameter optimization, we conduct corresponding simulation analysis. The results show that our present work can present both higher key rate and a farther transmission distance than the standard method.
Keywords:  quantum key distribution      intensity fluctuations      decoy-state method  
Received:  19 September 2024      Revised:  21 November 2024      Accepted manuscript online:  03 December 2024
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: We gratefully acknowledge the financial support from the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key R&D Program (Grant No. BE2022071), the Natural Science Foundation of Jiangsu Province (Grant No. BK20192001), the National Natural Science Foundation of China (Grant No. 12074194), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX220954).
Corresponding Authors:  Qin Wang     E-mail:  qinw@njupt.edu.cn

Cite this article: 

Zi-Qi Chen(陈子骐), Hao-Bing Sun(孙昊冰), Ming-Shuo Sun(孙铭烁), and Qin Wang(王琴) Improved reference-frame-independent quantum key distribution with intensity fluctuations 2025 Chin. Phys. B 34 020302

[1] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Zhang C X, Wu D, Cui P W, et al. 2023 Chin. Phys. B 32 124207
[4] Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[5] Qi B, Fung C H F, Lo H K and Ma X 2007 Quantum Inf. Comput. 7 73
[6] Qi B, Fung C H F, Lo H K, et al. 2005 arXiv preprint quant-ph/0512080
[7] Kartalopoulos S V 2005 MILCOM 2005 2788
[8] Brazaola-Vicario, Aitor, et al. 2024 Opt. Commun. 2024 1438
[9] Laing A, Scarani V, Rarity J G, et al. 2010 Phys. Rev. A 82 012304
[10] Wang C, Sun S H, Ma X C, et al. 2015 Phys. Rev. A 92 042319
[11] Wang F, Zhang P, Wang X, et al. 2016 Phys. Rev. A 94 062330
[12] Pramanik T, Park B K, Cho Y W, et al. 2017 Phys. Rev. A 381 2497
[13] Liu H, Wang J, Ma H, et al. 2019 Phys. Rev. Appl. 12 034039
[14] Zhou X Y, Ding H J, Sun M S, et al. 2021 Phys. Rev. Appl. 15 064016
[15] Liu J Y, Zhou X Y, Zhang C H, et al. 2021 J. Lightwave Technol. 39 5486
[16] Wei K J, Chen Z H, Li Z J, et al. 2022 J. Opt. Soc. Am. B 39 3041
[17] Zhou C, Zhao Y M, Yang X L, et al. 2024 Chin. Phys. B 33 080306
[18] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[19] Wang X B 2005 Phys. Rev. Lett. 94 230503
[20] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[21] Inoue K and Honjo T 2005 Phys. Rev. A 71 042305
[22] Niederberger A, Scarani V and Gisin N. 2005 Phys. Rev. A 71 042316
[23] Acin A, Gisin N and Scarani V 2004 Phys. Rev. A 69 012309
[24] Wang X B 2007 Phys. Rev. A 75 052301
[25] Wang X B, Peng C Z, Pan J W, et al. 2008 Phys. Rev. A 77 042311
[26] Jiang C, Yu Z W, Hu X L, et al. 2023 National Science Review 10 nwac186
[27] Zhou Y H, Yu Z W and Wang X B 2014 Phys. Rev. A 89 052325
[1] Effect of pseudo-random number on the security of quantum key distribution protocol
Xiao-Liang Yang(杨晓亮), Yu-Qing Li(李毓擎), and Hong-Wei Li(李宏伟). Chin. Phys. B, 2025, 34(2): 020301.
[2] Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering
Chun Zhou(周淳), Yan-Mei Zhao(赵燕美), Xiao-Liang Yang(杨晓亮), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Xiao-Lei Jiang(姜晓磊), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Mu-Sheng Jiang(江木生), Xiang Wang(汪翔), Hai-Long Zhang(张海龙), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(8): 080306.
[3] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[4] Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(2): 020313.
[5] Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices
Mingshuo Sun(孙铭烁), Chun-Hui Zhang(张春辉), Rui Zhang(章睿), Xing-Yu Zhou(周星宇), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(11): 110302.
[6] Reference-frame-independent quantum key distribution with two-way classical communication
Chun Zhou(周淳), Hai-Tao Wang(汪海涛), Yi-Fei Lu(陆宜飞), Xiao-Lei Jiang(姜晓磊), Yan-Mei Zhao(赵燕美), Yu Zhou(周雨), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Xiang Wang(汪翔), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(10): 100302.
[7] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[8] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[9] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[10] Security of the traditional quantum key distribution protocols with finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[11] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[12] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[13] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[14] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[15] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
No Suggested Reading articles found!