Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010305    DOI: 10.1088/1674-1056/ac9224
GENERAL Prev   Next  

Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution

Dan Wu(吴丹)1,3, Xiao Li(李骁)1,3, Liang-Liang Wang(王亮亮)1, Jia-Shun Zhang(张家顺)1,†, Wei Chen(陈巍)4, Yue Wang(王玥)1, Hong-Jie Wang(王红杰)1, Jian-Guang Li(李建光)1, Xiao-Jie Yin(尹小杰)1, Yuan-Da Wu(吴远大)1,2,3, Jun-Ming An(安俊明)1,‡, and Ze-Guo Song(宋泽国)5
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China;
5 Wuxi Institute of Interconnect Technology, Co., Ltd. Wuxi 214000, China
Abstract  Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach-Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 ℃. The delay time change is 0.321 ps within a temperature change of 40 ℃. The spectral shift is 0.0011 nm/0.1 ℃. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.
Keywords:  quantum key distribution      planar lightwave circuit      temperature characterization      interference visibility  
Received:  24 June 2022      Revised:  07 September 2022      Accepted manuscript online:  15 September 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306403), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43000000), Innovation Program for Quantum Science and Technology, and Computer Interconnect Technology Alliance Funding (Grant No. 20220103).
Corresponding Authors:  Jia-Shun Zhang, Jun-Ming An     E-mail:;

Cite this article: 

Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国) Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution 2023 Chin. Phys. B 32 010305

[1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science 20 124
[2] Sharma P, Agrawal A, Bhatia V, Prakash S and Mishra A K 2021 IEEE Open Journal of the Communications Society 2 2049
[3] Zhang Q, Xu F, Chen Y A, Peng C Z and Pan J W 2018 Opt. Express 26 24260
[4] Sibson P, Kennard J E, Stanisic S, Erven C, O'Brien J L and Thompson M G 2017 Optica 4 172
[5] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys 81 1301
[6] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J 1992 J. Cryptology 5 3
[7] Geng W, Zhang C, Zheng Y L, He J K, Zhou C and Kong Y C 2019 Opt. Express 27 29045
[8] Grunenfelder F, Boaron A, Rusca D, Martinb A and Zbinden H 2020 Appl. Phys. Lett. 117 144003
[9] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O'Brien J L and Thompson M G 2017 Nat. Commun. 8 13984
[10] Cao L, Luo W, Wang Y X, et al. 2020 Phys. Rev. Appl. 14 011001
[11] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q and Pan J W 2021 Nat. Photon. 15 570
[12] Geng J Q, Fan-Yuan G J, Wang S, Zhang Q F, Chen W, Yin Z Q, He D Y, Guo G C and Han Z F 2021 Opt. Lett. 46 6099
[13] Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y and Pan J W 2018 Opt. Express 26 6010
[14] Dynes J F, Kindness S J, Tam S W B, Plews A, Sharpe A W, Lucamarini M, Fröhlich B, Yuan Z L, Penty R V and Shields A J 2016 Opt. Express 24 8081
[15] Wang J, Sciarrino F, Laing A and Thompson M G 2020 Nat. Photonics 14 273
[16] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lončar M 2018 Nature 562 101
[17] Orieux A and Diamanti E 2016 J. Opt. 18 083002
[18] Nambu Y, Yoshino K I and Tomita A 2008 J. Mod. Opt. 55 1953
[19] Li X, Ren M Z, Zhang J S, Wang L L, Chen W, Wang Y, Yin X J, Wu Y D and An J M 2021 Photon. Res. 9 222
[20] Zhang G W, Ding Y Y, Chen W, Wang F X, Ye P, Huang G Z, Wang S, Yin Z Q, AN J M, Guo G C and HAN Z F 2021 Photon. Res. 9 2176
[21] Dutta A K, Dutta N K, Fujiwara M 2003 WDM Technologies: Active Optical Components, Elsevier Science (California: Elsevier Science) pp. 210-224
[22] Zhao J H, Ryan T and Ho P S 1999 J. Appl. Phys. 85 6421
[23] Liu X B, Tang Z L, Liao C J, Lu F and Liu S H 2006 Chin. J. Quantum Elect. 2 191
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[4] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[5] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[8] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[9] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[10] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[11] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!