Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080306    DOI: 10.1088/1674-1056/acbdea
GENERAL Prev   Next  

Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution

Jiang-Ping Zhou(周江平)1, Yuan-Yuan Zhou(周媛媛)1,†, Xue-Jun Zhou(周学军)1, and Xuan Bao(暴轩)2
1. College of Electronic Engineering, Naval University of engineering, Wuhan 430000, China;
2. Unit 92682, Zhanjiang 524000, China
Abstract  Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution, breaking through the traditional linear key-rate bound. In practical applications, finite data size can cause significant system performance to deteriorate when data size is below 1010. In this work, an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution, offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security. Moreover, we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance. The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach, and approach the results obtained when the Gaussian approximation is employed. At the same time, the proposed scheme retains the same security level as the Chernoff-Hoeffding method, and is even more secure than the Gaussian approximation.
Keywords:  quantum key distribution      phase matching protocol      statistical fluctuation analysis      decoy state  
Received:  10 January 2023      Revised:  19 February 2023      Accepted manuscript online:  22 February 2023
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: We are grateful to Mr. D Z Lan and Mr. Y M Zhu for their enlightening discussion and friendly help in mathematical simulation.
Corresponding Authors:  Yuan-Yuan Zhou     E-mail:  EPJZYY@aliyun.com

Cite this article: 

Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩) Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution 2023 Chin. Phys. B 32 080306

[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 1984 pp. 175-179
[2] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[3] Xu F, Ma X, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 25002
[4] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[5] Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B 29 070303
[6] Zhang S J, Xiao C, Zhou C, Wang X, Yao J S, Zhang H L and Bao W S 2020 Chin. Phys. B 29 020301
[7] Zhang Y Y, Bao W S, Zhou C, Li H W, Wang Y and Jiang M S 2017 Chin. Phys. Lett. 34 040301
[8] Jain N, Stiller B, Khan I, Elser D, Marquardt C and Leuchs G 2016 Contemp. Phys. 57 366
[9] Gottesman D, Hoi-Kwonglo L O, Lütkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[10] Chen G, Wang L, Li W, Zhao Y, Zhao S and Gruska J 2020 Quantum Inf. Process. 19 416
[11] Takeoka M, Guha S and Wilde M M 2014 Nat. Commun. 5 5235
[12] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043
[13] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[14] Ma X F, Zeng P and Zhou H Y 2018 Phys. Rev. X 8 031043
[15] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 1
[16] Mao Y, Zeng P and Chen T Y 2021 Adv. Quantum Technol. 12 1012
[17] Cui C H, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[18] Zhou F, Qu W, Wang J, Dou T, Li Z, Yang S, Sun Z, Miao G and Ma H 2020 Eur. Phys. J. D 74 185
[19] Currás-Lorenzo G, Navarrete Á, Azuma K, Kato G, Curty M and Razavi M 2021 Npj Quantum Inf. 7 22
[20] Wang W and Lo H K 2020 New J. Phys. 22 013020
[21] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q and Pan J W 2021 Nat. Photon. 15 570
[22] Pittaluga M, Minder M, Lucamarini M, Sanzaro M, Woodward R I, Li M J, Yuan Z and Shields A J 2021 Nat. Photon. 15 530
[23] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154
[24] Yu B, Mao Q, Zhu X, Yu Y and Zhao S 2021 Phys. Lett. A 418 127702
[25] Zhou J P, Zhou Y Y, Gu R W and Zhou X J 2022 Int. J. Quantum Inf. 20 2250005
[26] Namiki R and Hirano T 2006 Phys. Rev. A 74 032302
[27] Lim C C W, Curty M, Walenta N, Xu F and Zbinden H 2014 Phys. Rev. A 89 022307
[28] Curty M, Xu F, Cui W, Lim C C W, Tamaki K and Lo H K 2014 Nat. Commun. 5 3732
[29] Mao C C, Zhou X Y, zhu J R, Zhang C H, Zhang C M and Wang Q 2018 Opt. Express 26 13289
[30] Zhang Z, Zhao Q, Razavi M and Ma X 2017 Phys. Rev. A 95 012333
[31] Ding H J, Mao C C, Zhang C M and Wang Q 2018 Quantum Inf. Process. 17 332
[32] Yu W, Zhou Y Y and Zhou X J 2021 Chin. J. Quantum Electron. 38 37
[33] Zhou J P, Zhou Y Y, Zhou X J and Nie N 2021 J. Univ. Electron. Sci. Technol. China 50 650
[1] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[2] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[3] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[4] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[7] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[8] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[9] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[10] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[11] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[12] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[13] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
No Suggested Reading articles found!