Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050305    DOI: 10.1088/1674-1056/ac8730
GENERAL Prev   Next  

Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states

Yu Zhou(周雨)1,2, Hong-Wei Li(李宏伟)1,2,†, Chun Zhou(周淳)1,2, Yang Wang(汪洋)1,2, Yi-Fei Lu(陆宜飞)1,2, Mu-Sheng Jiang(江木生)1,2, Xiao-Xu Zhang(张晓旭)1,2, and Wan-Su Bao(鲍皖苏)1,2,‡
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China;
2 Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Quantum key distribution provides an unconditional secure key sharing method in theory, but the imperfect factors of practical devices will bring security vulnerabilities. In this paper, we characterize the imperfections of the sender and analyze the possible attack strategies of Eve. Firstly, we present a quantized model for distinguishability of decoy states caused by intensity modulation. Besides, considering that Eve may control the preparation of states through hidden variables, we evaluate the security of preparation in practical quantum key distribution (QKD) scheme based on the weak-randomness model. Finally, we analyze the influence of the distinguishability of decoy state to secure key rate, for Eve may conduct the beam splitting attack and control the channel attenuation of different parts. Through the simulation, it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness, especially when Eve can control the channel attenuation.
Keywords:  weak randomness      quantum key distribution      distinguishable decoy state  
Received:  19 May 2022      Revised:  20 July 2022      Accepted manuscript online:  05 August 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309702), NSAF (Grant No. U2130205), the National Natural Science Foundation of China (Grant Nos. 62101597, 61605248, and 61505261), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan (Grant Nos. 202300410534 and 202300410532), and the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:  Hong-Wei Li, Wan-Su Bao     E-mail:  lhw@qiclab.cn;bws@qiclab.cn

Cite this article: 

Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏) Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states 2023 Chin. Phys. B 32 050305

[1] Bennett C H and Brassard G 1984 Theor. Comput. Sci. 560 7
[2] Lo H K and Chau H F 1999 Science 283 2050
[3] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[4] Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 012332
[5] Brassard G, Lutkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[6] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[7] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[8] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[9] Wang X B 2005 Phys. Rev. Lett. 94 230503
[12] Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J, Lita A E, Nam S W and Nordholt J E 2007 Phys. Rev. Lett. 98 010503
[13] Dixon A R, Yuan Z L, Dynes J F, Sharpe A W and Shields A J 2008 Opt. Express 16 18790
[10] Liao S K, Yong H L, Liu C, et al. 2017 Nat. Photonics 11 509
[11] Yin H L, Fu Y, Liu H, Tang Q J, Wang J, You L X, Zhang W J, Chen S J, Wang Z, Zhang Q, Chen T Y, Chen Z B and Pan J W 2017 Phys. Rev. A 95 032334
[14] Huang A, Sun S H, Liu Z and Makarov V 2018 Phys. Rev. A 98 012330
[15] Maan P 2022 Phys. Rev. B 128 178
[16] Li H W, Xu Z M and Cai Q Y 2018 Phys. Rev. A 98 062325
[17] Li H W, Yin Z Q, Wang S, Qian Y J, Chen W, Guo G C and Han Z F 2015 Sci. Rep. 5 16200
[18] Li H W, Xu Z M, Yin Z Q and Cai Q Y 2020 Phys. Rev. A 102 022605
[19] Sun S H, Tian Z Y, Zhao M S and Ma Y 2020 Sci. Rep. 10 18145
[20] Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Phys. Rev. A 73 022320
[21] Jain N, Anisimova E, Khan I, Makarov V, Marquardt C and Leuchs G 2014 New J. Phys. 16 123030
[22] Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
[23] Li H W, Wang S, Huang J Z, Chen W, Yin Z Q, Li F Y, Zhou Z, Liu D, Zhang Y, Guo G C, Bao W S and Han Z F 2011 Phys. Rev. A 84 062308
[24] Sajeed S, Chaiwongkhot P, Bourgoin J P, Jennewein T, Lutkenhaus N and Makarov V 2015 Phys. Rev. A 91 062301
[25] Qian Y J, Li H W, He D Y, Yin Z Q, Zhang C M, Chen W, Wang S and Han Z F 2015 Chin. Phys. B 24 090305
[26] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[27] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum 3 020315
[28] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[29] Yin H L and Chen Z B 2019 Sci. Rep. 9 14918
[30] Yin H L and Chen Z B 2019 Sci. Rep. 9 17113
[31] Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto Y, Shimada K, Honma Y, Sohma K, Fujii T and Hasegawa T 2018 Journal of Lightwave Technology 36 44
[32] Liu W B, Li C L, Xie Y M, Weng C X, Gu J, Cao X Y, Lu Y S, Li B H, Yin H L and Chen Z B 2021 PRX Quantum 2 040334
[33] Wang Y, Bao W S, Zhou C, Jiang M S and Li H W 2016 Phys. Rev. A 94 032335
[34] Lim C C W, Curty M, Walenta N, Xu F and Zbinden H 2014 Phys. Rev. A 89 022307
[35] Azuma K 1967 Tohoku Math. J. 19 357
[36] Hasegawa T, Tamura Y, Sakuma H, Kawaguchi Y, Yamamoto Y and Koyano Y 2018 SEI Tech. Rev. 86 18
[37] Rusca D, Boaron A, Grunenfelder F, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 171104
[1] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[5] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[6] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[9] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[10] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[11] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
No Suggested Reading articles found!