SPECIAL TOPIC — Quantum communication and quantum network |
Prev
Next
|
|
|
Quantum-enhanced interferometry with unbalanced entangled coherent states |
Jun Tang(汤俊)1, Zi-Hang Du(堵子航)1, Wei Zhong(钟伟)1,†, Lan Zhou(周澜)2, and Yu-Bo Sheng(盛宇波)3 |
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 3 College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states (ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter (BS). We identify the optimal phase sensitivity of this scheme by maximizing the quantum Fisher information (QFI) with respect to the BS transmission ratio. Our scheme outperforms the conventional scheme with a balanced BS, particularly in the presence of single-mode photon loss. Notably, our scheme retains quantum advantage in phase sensitivity in the limit of high photon intensity, where the balanced scheme offers no advantage over the classical strategy.
|
Received: 11 September 2024
Revised: 13 November 2024
Accepted manuscript online: 03 December 2024
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.St
|
(Nonclassical interferometry, subwavelength lithography)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12005106) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. JSCX23-0260). Y. B. S. acknowledges support from the National Natural Science Foundation of China (Grant No. 11974189). L. Z. acknowledges support from the National Natural Science Foundation of China (Grant No. 12175106). |
Corresponding Authors:
Wei Zhong
E-mail: zhongwei1118@gmail.com
|
Cite this article:
Jun Tang(汤俊), Zi-Hang Du(堵子航), Wei Zhong(钟伟), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波) Quantum-enhanced interferometry with unbalanced entangled coherent states 2025 Chin. Phys. B 34 020303
|
[1] Rarity J G, Tapster P R, Jakeman E, Larchuk T, Campos R A, Teich M C and Saleh B E A 1990 Phys. Rev. Lett. 65 1348 [2] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161 [3] Walther P, Pan JW, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158 [4] Wei C Q, Liu J B, Dong Y F, Sun Y N, Zhou Y, Zheng H B, Liu Y Y, Yan X S, Li F L and Xu Z 2024 Chin. Phys. B 33 034203 [5] Liu H L, Wang M J, Bao J X, Liu C, Li Y, Li S J and Wang H 2022 Chin. Phys. B 31 110306 [6] Tse M, et al. 2019 Phys. Rev. Lett. 123 231107 [7] Acernese F, et al. (Virgo Collaboration) 2019 Phys. Rev. Lett. 123 231108 [8] Gault W and Shepherd G 1982 Advances in Space Research 2 111 [9] Lu T L, Yuan H, Kong L Q, Zhao Y J, Zhang L L and Zhang C L 2016 Chin. Phys. B 25 080702 [10] Wineland D J, Bollinger J J, Itano W M and Heinzen D J1994 Phys. Rev. A 50 67 [11] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476 [12] Afek I, Ambar O and Silberberg Y 2010 Science 328 879 [13] Namkung M, Kim D H, Hong S, Kim Y S, Lee C and Lim H T 2024 New J. Phys. 26 073028 [14] Caves C M 1981 Phys. Rev. D 23 1693 [15] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278 [16] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602 [17] Tan Q S, Liao J Q,Wang X G and Nori F 2014 Phys. Rev. A 89 053822 [18] Carranza R and Gerry C C 2012 J. Opt. Soc. Am. B 29 2581 [19] Wang S, Zhang J and Xu X 2022 Opt. Commun. 505 127592 [20] Xu J H, Wang J Z, Chen A X, Li Y and Jin G R 2019 Chin. Phys. B 28 120303 [21] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601 [22] Chen X T, Zhang R, Lu W J, Zuo Y, Jiao Y F and Kuang L M 2024 Phys. Rev. A 109 042609 [23] Sanders B C 2012 J. Phys. A: Math. Theor. 45 244002 [24] Luis A 2001 Phys. Rev. A 64 054102 [25] Jing X X, Liu J, Zhong W and Wang X G 2014 Commun. Theor. Phys. 61 115 [26] Zhang Y M, Li XW, YangWand Jin G R2013 Phys. Rev. A 88 043832 [27] Huang W, Liang X, Zhu B, Yan Y, Yuan C H, Zhang W and Chen L Q 2023 Phys. Rev. Lett. 130 073601 [28] Wu S, Zhang D, Li Z, Shi M, Yang P, Guo J, Du W, Bao G and Zhang W 2023 Phys. Rev. Appl. 20 064028 [29] Ataman S 2022 Phys. Rev. A 105 012604 [30] Liu Y J, Wang M Y, Xiang Z C and Wu H B 2022 Chin. Phys. B 31 110305 [31] Helstrom C W 1976 Quantum Detection and Estimation Theory (Academic, New York) [32] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam) [33] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [34] Paris M A T T E O G A 2009 Int. J. Quantum Inform. 07 125 [35] Zhong W, Lu X M, Jing X X and Wang X G 2014 J. Phys. A: Math. Theor. 47 385304 [36] Takase K, Yoshikawa J i, Asavanant W, Endo M and Furusawa A 2021 Phys. Rev. A 103 013710 [37] Wang X, Zhan X, Li Y, Xiao L, Zhu G, Qu D, Lin Q, Yu Y and Xue P 2023 Phys. Rev. Lett. 131 150803 [38] García-Pérez G, Rossi M A, Sokolov B, Tacchino F, Barkoutsos P K, Mazzola G, Tavernelli I and Maniscalco S 2021 PRX Quantum 2 040342 [39] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A2009 Phys. Rev. Lett. 102 040403 [40] Demkowicz-Dobrzanski R, Dorner U, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. A 80 013825 [41] Joo J, Park K, Jeong H, Munro W J, Nemoto K and Spiller T P 2012 Phys. Rev. A 86 043828 [42] Braunstein S L, Caves C M and Milburn G 1996 Annals of Physics 247 135 [43] Ataman S 2020 Phys. Rev. A 102 013704 [44] Bai K, Peng Z, Luo H G and An J H 2019 Phys. Rev. Lett. 123 040402 [45] van Enk S J 2005 Phys. Rev. A 72 022308 [46] Pegg D T, Phillips L S and Barnett S M 1998 Phys. Rev. Lett. 81 1604 [47] Ralph T C and Lund A P 2009 Proceedings of 9th International Conference, edited by A. Lvovsky (AIP, New York) pp. 155-160 [48] Wen J, Novikova I, Qian C, Zhang C and Du S 2021 Photonics 8 [49] Jeong H, Zavatta A, Kang M, Lee S W, Costanzo L S, Grandi S, Ralph T C and Bellini M 2014 Nat. Photon. 8 564 [50] Xiang G Y, Ralph T C, Lund A P, Walk N and Pryde G J 2010 Nat. Photon. 4 316 [51] Zhang S, Yang S, Zou X, Shi B and Guo G 2012 Phys. Rev. A 86 034302 [52] Monteiro F, Verbanis E, Vivoli V C, Martin A, Gisin N, Zbinden H and Thew R T 2017 Quantum Science and Technology 2 024008 [53] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|