Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020301    DOI: 10.1088/1674-1056/ad99c9
SPECIAL TOPIC — Quantum communication and quantum network   Next  

Effect of pseudo-random number on the security of quantum key distribution protocol

Xiao-Liang Yang(杨晓亮), Yu-Qing Li(李毓擎), and Hong-Wei Li(李宏伟)†
Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450000, China
Abstract  In the process of quantum key distribution (QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequences generated by true random number generators as the source of randomness. In practical systems, due to the difficulty of obtaining true random numbers, pseudo-random number generators are used instead. Although the random numbers generated by pseudo-random number generators are statistically random, meeting the requirements of uniform distribution and independence, they rely on an initial seed to generate corresponding pseudo-random sequences. Attackers may predict future elements from the initial elements of the random sequence, posing a security risk to quantum key distribution. This paper analyzes the problems existing in current pseudo-random number generators and proposes corresponding attack methods and applicable scenarios based on the vulnerabilities in the pseudo-random sequence generation process. Under certain conditions, it is possible to obtain the keys of the communicating parties with very low error rates, thus effectively attacking the quantum key system. This paper presents new requirements for the use of random numbers in quantum key systems, which can effectively guide the security evaluation of quantum key distribution protocols.
Keywords:  quantum key distribution      pseudo-random      security  
Received:  31 July 2024      Revised:  26 November 2024      Accepted manuscript online:  03 December 2024
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Corresponding Authors:  Hong-Wei Li     E-mail:  lihow@ustc.edu.cn

Cite this article: 

Xiao-Liang Yang(杨晓亮), Yu-Qing Li(李毓擎), and Hong-Wei Li(李宏伟) Effect of pseudo-random number on the security of quantum key distribution protocol 2025 Chin. Phys. B 34 020301

[1] Shannon and Claude E 1949 Bell System Technical Journal 28 656
[2] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, December 10-12, 1984, Bangalore, India, p. 175
[3] Priv.-Doz.Dr. W Schindler 1999 Functionality Classes and Evaluation Methodology for Deterministic Random Number Generators (Bonn: BSI) pp. 5-11
[4] Knuth D E 1997 The Art of Computer Programming, 3nd edn. (Boston: Addison-Wesley) pp. 10-26
[5] Golomb and Solomon W 1972 AIEE Transactions on Information Theory 18 80
[6] Massey and James L 1969 IEEE Transactions on Information Theory 15 122
[7] Jin C H, Zheng H R and Zhang S W 2009 Cryptography (Beijing: Higher Education Press) pp. 86-88 (in Chinese)
[8] Biham E and Dunkelman O 2000 Progress in Cryptology: INDOCRYPT 2000 (Heidelberg: Springer-Verlag) pp. 43-51
[9] Lu Y and Vaudenay S 2004 Advances in Cryptology-ASIACRYPT 2004 (Heidelberg: Springer-Verlag) pp. 483-499
[10] Coutinho M and Passos I 2022 28th International Conference on the Theory and Application of Cryptology and Information Security, December 5-9, 2022, Taipei, Taiwan, pp. 256-286
[11] Armknecht F and Krause M 2003 23th Annual International Cryptology Conference, August 17-21, 2003, Santa Barbara, USA, pp. 162- 175
[12] Hawkes P and Rose G 2024 24th Annual International Cryptology Conference, August 15-19, 2004, Santa Barbara, USA, pp. 390-406
[13] KrauseMand Stegemann D 2006 Proceedings of the 13th International Workshop on Fast Software Encryption (Heidelberg: Springer-Verlag) pp. 163-178
[14] Zhang B and Feng D G 2011 Science China Information Sciences 54 1635
[1] Improved reference-frame-independent quantum key distribution with intensity fluctuations
Zi-Qi Chen(陈子骐), Hao-Bing Sun(孙昊冰), Ming-Shuo Sun(孙铭烁), and Qin Wang(王琴). Chin. Phys. B, 2025, 34(1): 020302.
[2] Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering
Chun Zhou(周淳), Yan-Mei Zhao(赵燕美), Xiao-Liang Yang(杨晓亮), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Xiao-Lei Jiang(姜晓磊), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Mu-Sheng Jiang(江木生), Xiang Wang(汪翔), Hai-Long Zhang(张海龙), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(8): 080306.
[3] Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles
Gan Gao(高甘). Chin. Phys. B, 2024, 33(4): 040301.
[4] Analysis of pseudo-random number generators in QMC-SSE method
Dong-Xu Liu(刘东旭), Wei Xu(徐维), and Xue-Feng Zhang(张学锋). Chin. Phys. B, 2024, 33(3): 037509.
[5] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[6] Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(2): 020313.
[7] Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices
Mingshuo Sun(孙铭烁), Chun-Hui Zhang(张春辉), Rui Zhang(章睿), Xing-Yu Zhou(周星宇), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(11): 110302.
[8] Reference-frame-independent quantum key distribution with two-way classical communication
Chun Zhou(周淳), Hai-Tao Wang(汪海涛), Yi-Fei Lu(陆宜飞), Xiao-Lei Jiang(姜晓磊), Yan-Mei Zhao(赵燕美), Yu Zhou(周雨), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Xiang Wang(汪翔), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(10): 100302.
[9] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[10] An efficient multiparty quantum secret sharing scheme using a single qudit
Wenwen Hu(胡文文), Bangshu Xiong(熊邦书), and Rigui Zhou(周日贵). Chin. Phys. B, 2023, 32(8): 080303.
[11] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[12] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[13] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[14] Security of the traditional quantum key distribution protocols with finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[15] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
No Suggested Reading articles found!