|
|
Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors |
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪)†, Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨)‡ |
College of Information Science and Technology, Northwest University, Xi'an 710127, China |
|
|
Abstract We propose a new scheme to enhance the performance of the Gussian-modulated coherent-state continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) system via quantum scissors (QS) operation at Bob's side. As an non-deterministic amplifying setup, we firstly introduce the QS-enhanced CV-MDI-QKD protocol and then investigate the success probability of the QS operation in accordance with the equivalent one-way scheme. Afterwards, we investigate the effect of the QS operation on the proposed scheme and analyze the performance of the QS-enhanced CV-MDI-QKD system under the extreme asymmetric circumstance. Simulation results show that the QS operation can indeed improve the performance of the CV-MDI-QKD system considerably. QS-enhanced CV-MDI-QKD protocol outperforms the original CV-MDI-QKD protocol in both the maximum transmission distance and the secret key rate. Moreover, the better the performance of QS operation, the more significant the improvement of performance of the system.
|
Received: 24 February 2022
Revised: 22 April 2022
Accepted manuscript online: 07 May 2022
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001383) and the Scientific Research Plan Project of Shaanxi Education Department (Natural Science Special Project) (Grant No. 19JK0847). |
Corresponding Authors:
Weiqi Liu, Chen He
E-mail: vickylwq1991@nwu.edu.cn;chenhe@nwu.edu.cn
|
Cite this article:
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨) Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors 2022 Chin. Phys. B 31 090304
|
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661 [2] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J 1992 J. Cryptol. 5 3 [3] Warke A, Behera B K and Panigrahi P K 2020 Quantum Inf. Process. 19 407 [4] Ralph T C 1999 Phys. Rev. A 61 010303 [5] Reid M D 2000 Phys. Rev. A 62 062308 [6] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513 [7] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 [8] Cerf N J, Lévy M and Van Assche G 2001 Phys. Rev. A 63 052311 [9] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [10] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238 [11] Chi Y M, Qi B, Zhu W, Qian L, Lo H K, Youn S H, Lvovsky A and Tian L 2011 New J. Phys. 13 013003 [12] Zeng G H 2010 Quantum Private Communication (Beijing:Higher Education Press) pp. 260-309 [13] Leverrier A, García-Patrón R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502 [14] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504 [15] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002 [16] Lo H K, Curty M and Tamaki K 2014 Nat. Photonics 8 595 [17] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [18] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502 [19] Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501 [20] Yin H L and Fu Y 2019 Sci. Rep. 9 3045 [21] Yin H L, Zhu W and Fu Y 2019 Sci. Rep. 9 49 [22] Xu F, Qi B, Liao Z and Lo H K 2013 Appl. Phys. Lett. 103 061101 [23] Li Z Y, Zhang Y C, Xu F H, Peng X and Guo H 2014 Phys. Rev. A 89 052301 [24] Ma X C, Sun S H, Jiang M S, Gui M and Liang L M 2014 Phys. Rev. A 89 042335 [25] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photon. 9 397 [26] Li F, Zhao W and Guo Y 2018 Int. J. Theor. Phys. 57 112 [27] Guo Y, Zhao W, Li F, Huang D, Liao Q and Xie C L 2017 Commun. Theor. Phys. 68 191 [28] Zhou Y H, Qin S F, Shi W M and Yang Y G 2021 Optik 242 166826 [29] Wu X D, Wang Y J, Huang D and Guo Y 2020 Front. Phys. 15 31601 [30] Peng Q Q, Wu X D and Guo Y 2019 Appl. Sci. 9 1333 [31] Zhao W, Ruan X C, Feng Y Y, Wang X X, Guo Y and Shi R H 2020 Int. J. Theor. Phys. 59 2939 [32] Djordjevic I B 2019 IEEE Access 7 147399 [33] Ma H X, Huang P, Bai D Y, Wang S Y, Bao W S and Zeng G H 2018 Phys. Rev. A 97 042329 [34] Zhao Y J, Zhang Y C, Xu B J, Yu S and Guo H 2018 Phys. Rev. A 97 042328 [35] Zhang S L and Zhang X D 2018 Phys. Rev. A 97 043830 [36] Guo Y, Ye W, Zhong H and Liao Q 2019 Phys. Rev. A 99 032327 [37] Ye W, Zhong H, Wu X D, Hu L Y and Guo Y 2020 Quantum Inf. Process. 19 346 [38] Zhang Y C, Xu M Y, Han S L, Yu S and Gu W Y 2013 Proceeding of 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, November 15-17, 2013, Beijing, China, p. 9 [39] Jing F, Liu W Q, Kong L Z and He C 2021 Entropy 23 1691 [40] Zhou J, Shi R H, Y Feng Y Y, Shi J J and Guo Y 2019 J. Phys. A:Math. Theor. 52 245303 [41] Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P and Tualle-Brouri R 2012 Phys. Rev. A 86 012327 [42] Ghalaii M, Ottaviani C, Kumar R, Pirandola S and Razavi M 2020 IEEE J. Sel. Areas Commun. 38 506 [43] Li Y, Guo Y, Ruan X C and Zhao W 2021 Int. J. Theor. Phys. 60 1949 [44] Ghalaii M, Ottaviani C, Kumar R, Pirandola S and Razavi M 2020 IEEE J. Sel. Top. Quantum Electron. 26 6400212 [45] Ralph T C and Lund A P 2009 AIP Conf. Proc. 1110 155 [46] Winnel M S, Hosseinidehaj N and Ralph T C 2020 Phys. Rev. A 102 063715 [47] Ghalaii M, Kumar R and Razavi M 2017 Proceeding of 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany, p. 1 [48] Seshadreesan K P, Krovi H and Guha S 2020 Phys. Rev. Res. 2 013310 [49] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|