Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090304    DOI: 10.1088/1674-1056/ac6dba
GENERAL Prev   Next  

Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors

Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨)
College of Information Science and Technology, Northwest University, Xi'an 710127, China
Abstract  We propose a new scheme to enhance the performance of the Gussian-modulated coherent-state continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) system via quantum scissors (QS) operation at Bob's side. As an non-deterministic amplifying setup, we firstly introduce the QS-enhanced CV-MDI-QKD protocol and then investigate the success probability of the QS operation in accordance with the equivalent one-way scheme. Afterwards, we investigate the effect of the QS operation on the proposed scheme and analyze the performance of the QS-enhanced CV-MDI-QKD system under the extreme asymmetric circumstance. Simulation results show that the QS operation can indeed improve the performance of the CV-MDI-QKD system considerably. QS-enhanced CV-MDI-QKD protocol outperforms the original CV-MDI-QKD protocol in both the maximum transmission distance and the secret key rate. Moreover, the better the performance of QS operation, the more significant the improvement of performance of the system.
Keywords:  measurement-device-independent      quantum key distribution      quantum scissors      performance  
Received:  24 February 2022      Revised:  22 April 2022      Accepted manuscript online:  07 May 2022
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001383) and the Scientific Research Plan Project of Shaanxi Education Department (Natural Science Special Project) (Grant No. 19JK0847).
Corresponding Authors:  Weiqi Liu, Chen He     E-mail:  vickylwq1991@nwu.edu.cn;chenhe@nwu.edu.cn

Cite this article: 

Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨) Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors 2022 Chin. Phys. B 31 090304

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J 1992 J. Cryptol. 5 3
[3] Warke A, Behera B K and Panigrahi P K 2020 Quantum Inf. Process. 19 407
[4] Ralph T C 1999 Phys. Rev. A 61 010303
[5] Reid M D 2000 Phys. Rev. A 62 062308
[6] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[7] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[8] Cerf N J, Lévy M and Van Assche G 2001 Phys. Rev. A 63 052311
[9] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[10] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[11] Chi Y M, Qi B, Zhu W, Qian L, Lo H K, Youn S H, Lvovsky A and Tian L 2011 New J. Phys. 13 013003
[12] Zeng G H 2010 Quantum Private Communication (Beijing:Higher Education Press) pp. 260-309
[13] Leverrier A, García-Patrón R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
[14] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504
[15] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[16] Lo H K, Curty M and Tamaki K 2014 Nat. Photonics 8 595
[17] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[18] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[19] Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501
[20] Yin H L and Fu Y 2019 Sci. Rep. 9 3045
[21] Yin H L, Zhu W and Fu Y 2019 Sci. Rep. 9 49
[22] Xu F, Qi B, Liao Z and Lo H K 2013 Appl. Phys. Lett. 103 061101
[23] Li Z Y, Zhang Y C, Xu F H, Peng X and Guo H 2014 Phys. Rev. A 89 052301
[24] Ma X C, Sun S H, Jiang M S, Gui M and Liang L M 2014 Phys. Rev. A 89 042335
[25] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photon. 9 397
[26] Li F, Zhao W and Guo Y 2018 Int. J. Theor. Phys. 57 112
[27] Guo Y, Zhao W, Li F, Huang D, Liao Q and Xie C L 2017 Commun. Theor. Phys. 68 191
[28] Zhou Y H, Qin S F, Shi W M and Yang Y G 2021 Optik 242 166826
[29] Wu X D, Wang Y J, Huang D and Guo Y 2020 Front. Phys. 15 31601
[30] Peng Q Q, Wu X D and Guo Y 2019 Appl. Sci. 9 1333
[31] Zhao W, Ruan X C, Feng Y Y, Wang X X, Guo Y and Shi R H 2020 Int. J. Theor. Phys. 59 2939
[32] Djordjevic I B 2019 IEEE Access 7 147399
[33] Ma H X, Huang P, Bai D Y, Wang S Y, Bao W S and Zeng G H 2018 Phys. Rev. A 97 042329
[34] Zhao Y J, Zhang Y C, Xu B J, Yu S and Guo H 2018 Phys. Rev. A 97 042328
[35] Zhang S L and Zhang X D 2018 Phys. Rev. A 97 043830
[36] Guo Y, Ye W, Zhong H and Liao Q 2019 Phys. Rev. A 99 032327
[37] Ye W, Zhong H, Wu X D, Hu L Y and Guo Y 2020 Quantum Inf. Process. 19 346
[38] Zhang Y C, Xu M Y, Han S L, Yu S and Gu W Y 2013 Proceeding of 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, November 15-17, 2013, Beijing, China, p. 9
[39] Jing F, Liu W Q, Kong L Z and He C 2021 Entropy 23 1691
[40] Zhou J, Shi R H, Y Feng Y Y, Shi J J and Guo Y 2019 J. Phys. A:Math. Theor. 52 245303
[41] Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P and Tualle-Brouri R 2012 Phys. Rev. A 86 012327
[42] Ghalaii M, Ottaviani C, Kumar R, Pirandola S and Razavi M 2020 IEEE J. Sel. Areas Commun. 38 506
[43] Li Y, Guo Y, Ruan X C and Zhao W 2021 Int. J. Theor. Phys. 60 1949
[44] Ghalaii M, Ottaviani C, Kumar R, Pirandola S and Razavi M 2020 IEEE J. Sel. Top. Quantum Electron. 26 6400212
[45] Ralph T C and Lund A P 2009 AIP Conf. Proc. 1110 155
[46] Winnel M S, Hosseinidehaj N and Ralph T C 2020 Phys. Rev. A 102 063715
[47] Ghalaii M, Kumar R and Razavi M 2017 Proceeding of 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany, p. 1
[48] Seshadreesan K P, Krovi H and Guha S 2020 Phys. Rev. Res. 2 013310
[49] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[3] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[4] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[7] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[8] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[9] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[10] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[11] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[12] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[15] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
No Suggested Reading articles found!