Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050308    DOI: 10.1088/1674-1056/ac9b03
GENERAL Prev   Next  

Phase-matching quantum key distribution with imperfect sources

Xiao-Xu Zhang(张晓旭)1,2,3, Yi-Fei Lu(陆宜飞)1,2, Yang Wang(汪洋)1,2,†, Mu-Sheng Jiang(江木生)1,2, Hong-Wei Li(李宏伟)1,2, Chun Zhou(周淳)1,2, Yu Zhou(周雨)1,2, and Wan-Su Bao(鲍皖苏)1,2,‡
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China;
2 Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Basic Department, SSF IEU, Zhengzhou 450001, China
Abstract  The huge discrepancies between actual devices and theoretical assumptions severely threaten the security of quantum key distribution. Recently, a general new framework called the reference technique has attracted wide attention in defending against the imperfect sources of quantum key distribution. Here, the state preparation flaws, the side channels of mode dependencies, the Trojan horse attacks, and the pulse classical correlations are studied by using the reference technique on the phase-matching protocol. Our simulation results highlight the importance of the actual secure parameters choice for transmitters, which is necessary to achieve secure communication. Increasing the single actual secure parameter will reduce the secure key rate. However, as long as the parameters are set properly, the secure key rate is still high. Considering the influences of multiple actual secure parameters will significantly reduce the secure key rate. These actual secure parameters must be considered when scientists calibrate transmitters. This work is an important step towards the practical and secure implementation of phase-matching protocol. In the future, it is essential to study the main parameters, find out their maximum and general values, classify the multiple parameters as the same parameter, and give countermeasures.
Keywords:  quantum key distribution      reference technique      imperfect sources      phase-matching  
Received:  09 July 2022      Revised:  22 September 2022      Accepted manuscript online:  18 October 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0309702 and 2020YFA0309701), the National Natural Science Foundation of China (Grant No. 62101597), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan (Grant Nos. 202300410534 and 202300410532), and the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:  Yang Wang, Wan-Su Bao     E-mail:  wy@qiclab.cn;bws@qiclab.cn

Cite this article: 

Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏) Phase-matching quantum key distribution with imperfect sources 2023 Chin. Phys. B 32 050308

[1] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
[2] Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501
[3] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X and Guan J Y 2014 Phys. Rev. Lett. 113 190501
[4] Valivarthi R, Lucio Martinez I, Chan P, Rubenok A, John C, Korchinski D, Duffin C, Marsili F, Verma V, Shaw M D, Stern J A, Nam S W, Oblak D, Zhou Q, Slater J A and Tittel W 2015 J. Mod. Opt. 62 1141
[5] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154
[6] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C and Han Z F 2019 Phys. Rev. X 9 021046
[7] Fang X T, Zeng P, Liu H, Zou M, Wu W, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L X, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y and Pan J W 2020 Nat. Photon. 14 422
[8] Liu Y, Yu Z W, Zhang W, Guan J Y, Chen J P, Zhang C, Hu X L, Li H, Jiang C, Lin J, Chen T Y, You L, Wang Z, Wang X B, Zhang Q and Pan J W 2019 Phys. Rev. Lett. 123 100505
[9] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You L, Wang Z, Wang X B, Zhang Q and Pan J W 2020 Phys. Rev. Lett. 124 070501
[10] Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y and Pan J W 2021 Phys. Rev. Lett. 126 250502
[11] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q and Pan J W 2021 Nat. Photon. 15 570
[12] Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z, Wang J Y, Zeilinger A and Pan J W 2018 Phys. Rev. Lett. 120 030501
[13] Zhong X, Wang W, Mandil R, Lo H K and Qian L 2022 Phys. Rev. Appl. 17 014025
[14] Dynes J F, Wonfor A, Tam W W S, Sharpe A W, Takahashi R, Lucamarini M, Plews A, Yuan Z L, Dixon A R, Cho J, Tanizawa Y, Elbers J P, Greißer H, White I H, Penty R V and Shields A J 2019 npj Quantum Inf. 5 10
[15] Valivarthi R, Zhou Q, John C, Marsili F, Verma V B, Shaw M D, Nam S W, Oblak D and Tittel W 2017 Quantum Sci. Technol. 2 04LT01
[16] Pereira M, Kato G, Mizutani A, Curty M and Tamaki K 2020 Sci. Adv. 6 aaz4487
[17] Gu J, Cao X Y, Fu Y, He Z W, Yin Z J, Yin H L and Chen Z B 2022 arXiv:2204.08323v1 [quant-ph]
[18] Yin Z Q, Fung C H F, Ma X, Zhang C M, Li H W, Chen W, Wang S, Guo G C and Han Z F 2013 Phys. Rev. A 88 062322
[19] Wang C, Wang S, Yin Z Q, Chen W, Li H W, Zhang C M, Ding Y Y, Guo G C and Han Z F 2016 Opt. Lett. 41 5596
[20] Zhou X Y, Ding H J, Zhang C H, Li J, Zhang C M and Wang Q 2020 Opt. Lett. 45 4176
[21] Tamaki K, Curty M, Kato G, Lo H K and Azuma K 2014 Phys. Rev. A 90 052314
[22] Cao Z, Zhang Z, Lo H K and Ma X 2015 New J. Phys. 17 053014
[23] Zhang X, Wang Y, Jiang M, Lu Y, Li H, Zhou C and Bao W 2021 Entropy 23 508
[24] Pereira M, Curty M and Tamaki K 2019 npj Quantum Inf. 5 62
[25] Lu Y F, Wang Y, Jiang M S, Zhang X X, Liu F, Li H W, Zhou C, Tang S B, Wang J Y and Bao W S 2021 Entropy 23 1103
[26] Gottesman D, Hoi Kwong L, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput 4 325
[27] Lo H K and Preskill J 2007 Quantum Inf. Comput 7 431
[28] Pinheiro P V P, Chaiwongkhot P, Sajeed S, Horn R T, Bourgoin J P, Jennewein T, Lutkenhaus N and Makarov V 2018 Opt. Express 26 21020
[29] Makarov V, Anisimov A and Skaar J 2006 Phys. Rev. A 74 022313
[30] Gerhardt I, Liu Q, Lamas Linares A, Skaar J, Kurtsiefer C and Makarov V 2011 Nat. Commun. 2 349
[31] Wiechers C, Lydersen L, Wittmann C, Elser D, Skaar J, Marquardt C, Makarov V and Leuchs G 2011 New J. Phys. 13 013043
[32] Pang X L, Yang A L, Zhang C N, Dou J P, Li H, Gao J and Jin X M 2020 Phys. Rev. Appl. 13 034008
[33] Elezov M, Ozhegov R, Goltsman G and Makarov V 2019 Opt. Express 27 30979
[34] Lamas Linares A and Kurtsiefer C 2007 Opt. Express 15 9388
[35] Antonio A, Nicolas B, Nicolas G, Serge M, Stefano P and Valerio S 2007 Phys. Rev. Lett. 98 230501
[36] Pironio S, Acin A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021
[37] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[38] Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
[39] Ma X and Razavi M 2012 Phys. Rev. A 86 062319
[40] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[41] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323
[42] Ma X, Zeng P and Zhou H 2018 Phys. Rev. X 8 031043
[43] Curty M, Azuma K and Lo H K 2019 npj Quantum Inf. 5 64
[44] Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[45] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043
[46] Zeng P, Wu W and Ma X 2020 Phys. Rev. Appl. 13 064013
[47] Zhang C M, Xu Y W, Wang R and Wang Q 2020 Phys. Rev. Appl. 14 064070
[48] Kobayashi T, Tomita A and Okamoto A 2014 Phys. Rev. A 90 032320
[49] Grunenfelder F, Boaron A, Rusca D, Martin A and Zbinden H 2020 Appl. Phys. Lett. 117 144003
[50] Mizutani A, Kato G, Azuma K, Curty M, Ikuta R, Yamamoto T, Imoto N, Lo H K and Tamaki K 2019 npj Quantum Inf. 5 8
[51] Roberts G L, Pittaluga M, Minder M, Lucamarini M, Dynes J F, Yuan Z L and Shields A J 2018 Opt. Lett. 43 5110
[52] Ding H J, Zhou X Y, Zhang C H, Li J and Wang Q 2022 Opt. Lett. 47 665
[53] Sekga C and Mafu M 2021 J. Phys. Commun. 5 045008
[54] Zhang X X, Wang Y, Jiang M S, Zhou C, Lu Y F and Bao W S 2021 J. Opt. Soc. Am. B 38 724
[55] Yu Y, Wang L, Zhao S and Mao Q 2021 Opt. Express 29 2227
[56] Grasselli F, Navarrete A and Curty M 2019 New J. Phys. 21 113032
[57] Lim K, Choi B S, Baek J H, Kim M, Choe J S, Kim K J, Ko Y H and Youn C J 2021 Opt. Express 29 18966
[58] Zhou X Y, Ding H J, Sun M S, Zhang S H, Liu J Y, Zhang C H, Li J and Wang Q 2021 Phys. Rev. Appl. 15 064016
[59] Liu J Y, Zhou X Y, Zhang C H, Ding H J, Chen Y P, Li J and Wang Q 2021 J. Lightwav. Technol. 39 5486
[60] Makarov V, Bourgoin J P, Chaiwongkhot P, Gagne M, Jennewein T, Kaiser S, Kashyap R, Legre M, Minshull C and Sajeed S 2016 Phys. Rev. A 94 030302
[1] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[5] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[6] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[9] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[10] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[11] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[12] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[13] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[14] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[15] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
No Suggested Reading articles found!