Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124207    DOI: 10.1088/1674-1056/acfd16
REVIEW Prev   Next  

Research progress in quantum key distribution

Chun-Xue Zhang(张春雪)1,3, Dan Wu(吴丹)1,3, Peng-Wei Cui(崔鹏伟)1,3, Jun-Chi Ma(马俊驰)1,3, Yue Wang(王玥)1, and Jun-Ming An(安俊明)1,2,3,†
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Quantum key distribution (QKD) is a sophisticated method for securing information by leveraging the principles of quantum mechanics. Its objective is to establish a confidential key between authorized partners who are connected via both a quantum channel and a classical authentication channel. This paper presents a comprehensive overview of QKD protocols, chip-based QKD systems, quantum light sources, quantum detectors, fiber-based QKD networks, space-based QKD systems, as well as the applications and prospects of QKD technology.
Keywords:  quantum key distribution (QKD)      sources      detectors      chip  
Received:  28 June 2023      Revised:  04 September 2023      Accepted manuscript online:  26 September 2023
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  03.67.Dd (Quantum cryptography and communication security)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0300701), the National Key Research and Development Program of China (Grant No.2018YFA0306403), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB43000000).
Corresponding Authors:  Jun-Ming An     E-mail:  junming@semi.ac.cn

Cite this article: 

Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明) Research progress in quantum key distribution 2023 Chin. Phys. B 32 124207

[1] Shannon C E 1948 Bell Syst. Tech. J. 27 379
[2] Hellman M 1976 IEEE Trans. Inf. Theory 22 644
[3] Rivest R L, Shamir A and Adleman L 1978 Commun. ACM 21 120
[4] Guo H 2016 Quantum Cryptography (Beijing: National Defense Industry Press) (in Chinese)
[5] Bennett C H and Brassard G 2020 Theor. Comput. Sci. 560 7
[6] Ekert A K 1991 Phys. Rev. Lett. 67 661
[7] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[8] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[9] Ralph T C 1999 Phys. Rev. A 61 010303
[10] Cerf N J, Levy M and Van A G 2001 Phys. Rev. A 63 052311
[11] García-Patrón R and Cerf N J 2009 Phys. Rev. Lett. 102 130501
[12] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[13] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[14] Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
[15] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[16] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[17] Stucki D, Brunner N, Gisin N, Scarani V and Zbinden H 2005 Appl. Phys. Lett. 87 194108
[18] Acin A, Massar S and Pironio S 2006 New J. Phys. 8 126
[19] Pirandola S, Mancini S, Lloyd S and Braunstein S L 2008 Nat. Phys. 4 726
[20] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[21] Bouchard F, Sit A, Heshami K, Fickler R and Karimi E 2018 Phys. Rev. A 98 010301
[22] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[23] Ma X, Zeng P and Zhou H 2018 Phys. Rev. X 8 031043
[24] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323
[25] Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[26] Zeng P, Zhou H, Wu W and Ma X 2022 Nat. Commun. 13 3903
[27] Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
[28] Da Silva T F, Vitoreti D, Xavier G, Do Amaral G, Temporão G and Von Der Weid J 2013 Phys. Rev. A 88 052303
[29] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J and Pan J W 2013 Phys. Rev. Lett. 111 130502
[30] Tang Y L, Yin H L, Chen S J, et al. 2014 Phys. Rev. Lett. 113 190501
[31] Tang Z, Liao Z, Xu F, et al. 2014 Phys. Rev. Lett. 112 190503
[32] Wang C, Song X T, Yin Z Q, et al. 2015 Phys. Rev. Lett. 115 160502
[33] Tang Y L, Yin H L, Chen S J, et al. 2014 IEEE J. Sel. Top. Quantum Electron. 21 116
[34] Choi Y, Kwon O, Woo M, Oh K, Han S W, Kim Y S and Moon S 2016 Phys. Rev. A 93 032319
[35] Comandar L, Lucamarini M, Fröhlich B, Dynes J, Sharpe A, Tam S B, Yuan Z, Penty R and Shields A 2016 Nat. Photonics 10 312
[36] Zhou Y H, Yu Z W and Wang X B 2016 Phys. Rev. A 93 042324
[37] Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q and Zhang W 2016 Phys. Rev. Lett. 117 190501
[38] Wang C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2017 Optica 4 1016
[39] Liu H, Wang J, Ma H and Sun S 2018 Optica 5 902
[40] Liu H, Wang W, Wei K, et al. 2019 Phys. Rev. Lett. 122 160501
[41] Wei K, Li W, Tan H, et al. 2020 Phys. Rev. X 10 031030
[42] Cao L, Luo W, Wang Y, et al. 2020 Phys. Rev. Appl. 14 011001
[43] Cao Y, Li Y H, Yang K X, et al. 2020 Phys. Rev. Lett. 125 260503
[44] Zheng X, Zhang P, Ge R, et al. 2021 Adv. Photonics 3 055002
[45] Zhou X Y, Ding H J, Sun M S, et al. 2021 Phys. Rev. Appl. 15 064016
[46] Liu J Y, Zhou X Y, Zhang C H, et al. 2021 J. Light. Technol. 39 5486
[51] Liu J Y, Ma X, Ding H J, Zhang C H, Zhou X Y and Wang Q 2023 Phys. Rev. A 108 022605
[137] Huang L, Zhang Y and Yu S 2021 Chin. Phys. Lett. 38 040301
[47] Xie Y M, Lu Y, Weng C X, Cao X, Jia Z Y, Bao Y and Chen Z B 2022 PRX Quantum 3 020315
[138] Li J, Zhu J L, Gao J, Pang Z G and Wang Q 2023 Phys. Rev. Appl. 19 054070
[49] Zhou L, Lin J, Xie Y M, Lu Y S, Jing Y, Yin H L and Yuan Z 2023 Phys. Rev. Lett. 130 250801
[50] Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y and Pan J W 2023 Phys. Rev. Lett. 130 030801
[52] Yin H and Fu Y 2019 Sci. Rep. 9 3045
[53] Lin J and Lütkenhaus N 2018 Phys. Rev. A 98 042332
[54] Zhong X, Hu J, Curty M, Qian L and Lo H K 2019 Phys. Rev. Lett. 123 100506
[55] Li B H, Xie Y M, Li Z, Weng C X, Li C L, Yin H L and Chen Z B 2021 Opt. Lett. 46 5529
[56] Pittaluga M, Minder M, Lucamarini M, Sanzaro M, Woodward R I, Li M J and Shields A J 2021 Nat. Photonics 15 530
[57] Zhong X, Wang W, Qia L and Lo H K 2021 NPJ Quantum Inf. 7 8
[58] Wang S, Yin Z Q, He D Y, et al. 2022 Nat. Photonics 16 154
[139] Han Y, Sun Z, Dou T, et al. 2022 Chin. Phys. Lett. 39 070301
[59] Xie Y M, Weng C X, Lu Y S, Fu Y, Wang Y, Yin H L and Chen Z B 2023 Phys. Rev. A 107 042603
[60] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X and Pa J W 2023 Phys. Rev. Lett. 130 210801
[61] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[62] Fung C H F, Qi B, Tamaki K and Lo H K 2007 Phys. Rev. A 75 032314
[63] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[64] Makarov V and Hjelme D R 2005 J. Mod. Opt. 52 691
[65] Qi B, Fung C H F, Lo H K and Ma X 2005 arXiv: quant-ph/0512080
[66] Makarov V 2009 New J. Phys. 11 065003
[67] Lo H K and Chau H F 1999 Science 283 2050
[68] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[69] Koashi M 2009 New J. Phys. 11 045018
[70] Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 012332
[71] Xu F, Ma X, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[72] Ma C, Sacher W D, Tang Z, Mikkelsen J C, Yang Y, Xu F, Thiessen T, Lo H and Poon J K 2016 Optica 3 1274
[73] Sibson P, Kennard J E, Stanisic S, Erven C, O'Brien J L and Thompson M G 2017 Optica 4 172
[74] Cai H, Long C M, DeRose C T, et al. 2017 Opt. Express 25 12282
[75] Bunandar D, Lentine A, Lee C, et al. 2018 Phys. Rev. X 8 021009
[76] Geng W, Zhang C, Zheng Y, He J, Zhou C and Kong Y 2019 Opt. Express 27 29045
[77] Avesani M, Calderaro L, Schiavon M, et al. 2021 NPJ Quantum Inf. 7 93
[78] Li X, Ren M, Zhang J, Wang L, Chen W, Wang Y, Yin X J and An J M 2021 Photonics Res. 9 222
[79] Zhu C X, Chen Z Y, Li Y, et al. 2022 Phys. Rev. Appl. 17 064034
[80] Zhang G, Zhao Z, Dai J, Yang S, Fu X and Yang L 2022 J. Light. Technol. 40 2052
[81] Zhang G W, Chen W, Fan-Yuan G J, et al. 2022 Sci. China Inf. Sci. 65 200506
[82] Li W, Zhang L, Tan H, et al. 2023 Nat. Photonics 17 416
[83] Sax R, Boaron A, Boso G, Atzeni S, Crespi A, Grünenfelder F and Zbinden H 2023 Photonics Res. 11 1007
[84] Zhang G, Haw J Y, Cai H, et al. 2019 Nat. Photonics 13 839
[85] Kong L, Li Z, Li C, Cao L, Xing Z, Cao J, Wang Y, Cai X and Zhou X 2020 Opt. Express 28 18449
[86] Dai J, Zhang L, Fu X, Zheng X and Yang L 2020 Opt. Lett. 45 2014
[87] Senellart P, Solomon G and White A 2017 Nat. Nanotechnol. 12 1026
[88] Arakawa Y and Holmes M J 2020 Appl. Phys. Rev. 7 021309
[89] Wang X, Zhu Y, Jin T, Ou W, Ou X and Zhang J 2022 Chip 1 100018
[90] Pelton M, Santori C, Vucković J, Zhang B, Solomon G S, Plant J and Yamamoto Y 2002 Phys. Rev. Lett. 89 233602
[91] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P and Vučković J 2007 Nature 450 857
[92] Reitzenstein S and Forchel A 2010 J. Phys. D: Appl. Phys. 43 033001
[93] Ates S, Agha I, Gulinatti A, Rech I, Badolato A and Srinivasan K 2013 Sci. Rep. 3 1397
[94] Schimpf C, Reindl M, Huber D, Lehner B, Covre Da Silva S F, Manna S and Rastelli A 2021 Sci. Adv. 7 eabe8905
[95] Cao V, Park J S, Tang M, Zhou T, Seeds A, Chen S and Liu H 2022 Front. Phys. 10 839953
[96] Vajner D A, Rickert L, Gao T, Kaymazlar K and Heindel T 2022 Adv. Quantum Technol. 5 2100116
[97] Rau M, Heindel T, Unsleber S, Braun T, Fischer J, Frick S and Weinfurter H 2014 New J. Phys. 16 043003
[98] Bozzio M, Vyvlecka M, Cosacchi M, Nawrath C, Seidelmann T, Loredo J C and Walther P 2022 NPJ Quantum Inf. 8 104
[99] Gao T, Rickert L, Urban F, Groβe J, Srocka N, Rodt S and Heindel T 2022 Appl. Phys. Rev. 9 011412
[100] Morrison C L, Pousa R G, Graffitti F, Koong Z X, Barrow P, Stoltz N G and Fedrizzi A 2023 Nat. Commun. 14 3573
[101] Basset F B, Valeri M, Neuwirth J, Polino E, Rota M B, Poderini D and Trotta R 2023 Quantum Sci. Technol. 8 025002
[102] Zhang C, Huang Y F, Liu B H, Li C F and Guo G C 2021 Adv. Quantum Technol. 4 2000132
[103] Euler S, Fitzke E, Nikiforov O, Hofmann D, Dolejsky T and Walther T 2021 Eur. Phys. J.: Spec. Top. 230 1073
[104] Meng J, Xun L C, Zhang C J, Zhang C H and Wang Q 2022 Acta Phys. Sin. 71 170304 (in Chinese)
[105] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X L and Pan J W 2020 Phys. Rev. Lett. 124 070501
[106] Hadfield R H 2009 Nat. Photonics 3 696
[107] Hall D, Liu Y H and Lo Y H 2015 Nanophotonics 4 397
[108] Chen B, Wan Y, Xie Z, Huang J, Zhang N, Shang C and Bowers J E 2020 ACS Photonics 7 528
[109] Lee S, Jin X, Jung H, Lewis H, Liu Y, Guo B and Krishna S 2023 Optica 10 147
[110] Sharma V and Bhardwaj A 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) pp. 17--18
[111] Xu K, Zhou W and Ning Z 2020 Small 16 2003397
[112] García de Arquer F P, Talapin D V, Klimov V I, Arakawa Y, Bayer M and Sargent E H 2021 Science 373 eaaz8541
[113] Chen N, Zhang J Q, Mao W B, Li X J, Song L W, Gao L and Yao L B 2022 Infrared Laser Eng. 51 20210821
[114] Charaev I, Bandurin D A, Bollinger A T, et al. 2023 Nat. Nanotechnol. 18 343
[115] Chen C, Zhao B, Wang R, et al. 2022 Adv. Mater. 34 2206364
[116] Kleiner R, Koelle D, Ludwig F and Clarke J 2004 Proc. IEEE 92 1534
[117] Zadeh I E, Chang J, Los J W, Gyger S, Elshaari A W, Steinhauer S, Dorenbos S N and Zwiller V 2021 Appl. Phys. Lett. 118 190502
[118] Terhaar R, Rödiger J, Häuβler M, et al. 2023 Opt. Express 31 2675
[119] You L 2020 Nanophotonics 9 2673
[120] Natarajan C M, Tanner M G and Hadfield R H 2012 Supercond. Sci. Technol. 25 063001
[121] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43
[122] Chen J P, Zhang C, Liu Y, et al. 2022 Phys. Rev. Lett. 128 180502
[123] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[124] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[125] Pan J W, Simon C, Brukner Č and Zeilinger A 2001 Nature 410 1067
[126] Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B and Pan J W 2012 Nat. Phys. 8 517
[127] Wei S H, Jing B, Zhang X Y, et al. 2022 Laser & Photonics Rev. 16 2100219
[128] Simon C, Afzelius M, Appel J, et al. 2010 Eur. Phys. J. D 58 1
[129] Heshami K, England D G, Humphreys P C, Bustard P J, Acosta V M, Nunn J and Sussman B J 2016 J. Mod. Opt. 63 2005
[130] Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140
[131] Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501
[132] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214
[133] Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501
[134] Liu J, Jiang Q, Ding H, et al. 2023 Sci. China Inf. Sci. 66 189402
[135] Liu J Y, Ding H J, Zhang C M, Xie S P and Wang Q 2019 Phys. Rev. Appl. 12 014059
[136] Cao Y, Zhao Y, Zhang J, Wang Q, Niyato D and Hanzo L 2022 IEEE Netw. 36 14
[1] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[2] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] Influence of carbon sources on the performance of carbon-coated nano-silicon
Lin Wang(王琳), Na Li(李娜), Hao-Sen Chen(陈浩森), and Wei-Li Song(宋维力). Chin. Phys. B, 2023, 32(10): 108201.
[5] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[6] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[7] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[8] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[9] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[10] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[11] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[12] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[13] Signal-to-noise ratio of Raman signal measured by multichannel detectors
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2021, 30(9): 097807.
[14] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[15] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
No Suggested Reading articles found!