Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017801    DOI: 10.1088/1674-1056/ad9ff9
RAPID COMMUNICATION Prev   Next  

Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge

Tao Liu(刘涛)1,2, Miao-Ling Lin(林妙玲)1,2, Da Meng(孟达)1,2, Xin Cong(从鑫)1,2, Qiang Kan(阚强)2,3, Jiang-Bin Wu(吴江滨)1,2, and Ping-Heng Tan(谭平恒)1,2,†
1 State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices. Novel physical properties and enhanced light-matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry. However, the intensity of first-order Raman scattering at crystal edges has been rarely explored, although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes. Here, by taking GaAs crystal with a well-defined edge as an example, we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge. This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge, which are confirmed by the finite-difference time-domain simulations. Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields, which quantitatively reproduce the corresponding experimental results. These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light-matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.
Keywords:  polarized Raman spectroscopy      edge      enhanced Raman scattering      spatial translational symmetry breaking      electromagnetic field redistribution      finite-difference time-domain simulation  
Received:  16 October 2024      Revised:  14 December 2024      Accepted manuscript online:  17 December 2024
PACS:  78.30.-j (Infrared and Raman spectra)  
  13.88.+e (Polarization in interactions and scattering)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1407000), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0460000), the National Natural Science Foundation of China (Grant Nos. 12322401, 12127807, and 12393832), CAS Key Research Program of Frontier Sciences (Grant No. ZDBS-LY-SLH004), Beijing Nova Program (Grant No. 20230484301), Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2023125), and CAS Project for Young Scientists in Basic Research (Grant No. YSBR-026).
Corresponding Authors:  Ping-Heng Tan     E-mail:  phtan@semi.ac.cn

Cite this article: 

Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒) Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge 2025 Chin. Phys. B 34 017801

[1] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[2] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
[3] Sepioni M, Nair R, Rablen S, Narayanan J, Tuna F,Winpenny R, Geim A and Grigorieva I 2010 Phys. Rev. Lett. 105 207205
[4] Tang S, Zhang C, Wong D, et al. 2017 Nat. Phys. 13 683
[5] Yin X, Ye Z, Chenet D A, Ye Y, O’Brien K, Hone J C and Zhang X 2014 Science 344 488
[6] Candussio S, Durnev M V, Tarasenko S A, Yin J, Keil J, Yang Y, Son S K, Mishchenko A, Plank H, Bel’kov V V, Slizovskiy S, Fal’ko V and Ganichev S D 2020 Phys. Rev. B 102 045406
[7] Ma Q, Lui C H, Song J C W, Lin Y, Kong J F, Cao Y, Dinh T H, Nair N L, Fang W, Watanabe K, Taniguchi T, Xu S Y, Kong J, Palacios T, Gedik N, Gabor NMand Jarillo-Herrero P 2019 Nat. Nanotech. 14 145
[8] Wang Q, Zheng J, He Y, Cao J, Liu X, Wang M, Ma J, Lai J, Lu H, Jia S, Yan D, Shi Y, Duan J, Han J, Xiao W, Chen J H, Sun K, Yao Y and Sun D 2019 Nat. Commun. 10 5736
[9] Tan P H 2019 Raman Spectroscopy of Two-Dimensional Materials (Singapore: Springer)
[10] Tan P H, Wu J B, Han W P, Zhao W J, Zhang X, Wang H and Wang Y F 2014 Phys. Rev. B 89 235404
[11] Zhang X, Li Q Q, Han W P, Lu Y, Shi W, Wu J B, Mikhaylushkin A S and Tan P H 2014 Nanoscale 6 7519
[12] Wu J B, Lin M L, Cong X, Liu H N and Tan P H 2018 Chem. Soc. Rev. 47 1822
[13] Xu W, Sun S, Yang M, Hao Z, Gao L, Lu J, Zhu J, Chen J and Cai J 2023 Chin. Phys. B 32 046803
[14] Wolf I D 1996 Semicond. Sci. Technol. 11 139
[15] Mcnally P J, Curley J W, Bolt M, Reader A, Tuomi T, Rantama”ki R, Danilewsky A N and DeWolf I 1999 J. Mater. Sci.: Mater. Electron. 10 351
[16] De Wolf I, Maes H E and Jones S K 1996 J. Appl. Phys. 79 7148
[17] Krishna R, Jones A N, Edge R and Marsden B J 2015 Radiat. Phys. Chem. 111 14
[18] Cançado L G, Pimenta M A, Neves B R A, Dantas M S S and Jorio A 2004 Phys. Rev. Lett. 93 247401
[19] Li Q Q, Zhang X, Han W P, Lu Y, Shi W, Wu J B and Tan P H 2015 Carbon 85 221
[20] Ribeiro H B, Villegas C E P, Bahamon D A, Muraca D, Castro Neto A H, de Souza E a T, Rocha A R, Pimenta M A and de Matos C J S 2016 Nat. Commun. 7 12191
[21] Angulo A M, Noguez C and Schatz G C 2011 J. Phys. Chem. Lett. 2 1978
[22] Abdulhalim I 2018 Nanophotonics 7 1891
[23] Zong C, Xu M, Xu L J, Wei T, Ma X, Zheng X S, Hu R and Ren B 2018 Chem. Rev. 118 4946
[24] Wang X, Huang S C, Hu S, Yan S and Ren B 2020 Nat. Rev. Phys. 2 253
[25] Li C and Jin Y 2021 Adv. Funct. Mater. 31 2008031
[26] Zhang X L, Zhang J, Luo Y and Ran J 2022 Chin. Phys. B 31 077401
[27] Khorasaninejad M, Walia J and Saini S S 2013 Appl. Phys. Lett. 103 163110
[28] Poborchii V, Tada T and Kanayama T 2009 Appl. Phys. Lett. 94 131907
[29] Guo Y, Zhang W, Wu H, Han J, Zhang Y, Lin S, Liu C, Xu K, Qiao J, Ji W, Chen Q, Gao S, Zhang W, Zhang X and Chai Y 2018 Sci. Adv. 4 eaau6252
[30] Ribeiro H, Ramos S, Seixas L, De Matos C and Pimenta M 2019 Phys. Rev. B 100 094301
[31] Zhao Y, Zheng L, Han S, Xu B, Fang Z, Zhang J and Tong L 2022 Nano Res. 15 6416
[32] Ribeiro H, Villegas C, Bahamon D, Muraca D, Castro Neto A, De Souza E, Rocha A, Pimenta M and De Matos C 2016 Nat. Commun. 7 12191
[33] Aspnes D E, Kelso S M, Logan R A and Bhat R 1986 J. Appl. Phys. 60 754
[34] Loudon R 1964 Adv. Phys. 13 423
[35] Le Ru E C and Etchegoin P G 2006 Chem. Phys. Lett. 423 63
[36] Yoshida K i, Itoh T, Tamaru H, Biju V, Ishikawa M and Ozaki Y 2010 Phys. Rev. B 81 115406
[37] Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R and Tian Z Q 2016 Nat. Rev. Mater. 1 16021
[1] Influence of network structure on spreading dynamics via tie range
Min Li(李敏), Yurong Song(宋玉蓉), Bo Song(宋波), Ruqi Li(李汝琦), Guo-Ping Jiang(蒋国平), and Zhang Hui(张晖). Chin. Phys. B, 2024, 33(8): 088902.
[2] Mobility edges and localization characteristics in one-dimensional quasiperiodic quantum walk
Xin-Hui Cui(崔鑫辉), Hui-Min Wang(王慧敏), and Zhi-Jian Li(李志坚). Chin. Phys. B, 2024, 33(6): 060301.
[3] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[4] Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
Wei Huang(黄威), Jinling Yu(俞金玲), Yu Liu(刘雨), Yan Peng(彭燕),Lijun Wang(王利军), Ping Liang(梁平), Tangsheng Chen(陈堂胜), Xiangang Xu(徐现刚), Fengqi Liu(刘峰奇), and Yonghai Chen(陈涌海). Chin. Phys. B, 2024, 33(3): 037801.
[5] Theoretical characterization of the adsorption configuration of pyrrole on Si(100) surface by x-ray spectroscopy
Hao-Qing Li(李好情), Jing Ming(明静), Zhi-Ang Jiang(姜志昂), Hai-Bo Li(李海波), Yong Ma(马勇), and Xiu-Neng Song(宋秀能). Chin. Phys. B, 2024, 33(2): 026102.
[6] Janus monolayers Fe2SSeX2 (X =Ga, In, and Tl): Robust nontrivial topology with high Chern number
Kang Jia(贾康), Xiao-Jing Dong(董晓晶), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(12): 127103.
[7] Edge modes in finite-size systems with different edge terminals
Huiping Wang(王会平), Li Ren(任莉), Xiuli Zhang(张修丽), and Liguo Qin(秦立国). Chin. Phys. B, 2024, 33(10): 107302.
[8] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[9] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[10] A deep learning method based on prior knowledge with dual training for solving FPK equation
Denghui Peng(彭登辉), Shenlong Wang(王神龙), and Yuanchen Huang(黄元辰). Chin. Phys. B, 2024, 33(1): 010202.
[11] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[12] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[13] Elemental composition x-ray fluorescence analysis with a TES-based high-resolution x-ray spectrometer
Bingjun Wu(吴秉骏), Jingkai Xia(夏经铠), Shuo Zhang(张硕), Qiang Fu(傅强), Hui Zhang(章辉),Xiaoming Xie(谢晓明), and Zhi Liu(刘志). Chin. Phys. B, 2023, 32(9): 097801.
[14] General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents
Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(9): 097204.
[15] Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3
Yuchao Zhou(周宇超), Jinling Yu(俞金玲), Yonghai Chen(陈涌海), Yunfeng Lai(赖云锋), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(8): 087102.
No Suggested Reading articles found!