Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116102    DOI: 10.1088/1674-1056/ad7575
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Valence electron structures dependences of structural stability and properties of REX3(RE=rare earth; X=In, Tl) and RE(In, Co)3 alloys

Boyang Li(李博洋), Yongquan Guo(郭永权)†, Yi-Chen Feng(冯奕晨), Xinze Wang(王鑫泽), and Wei Liu(刘葳)
School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Abstract  Intermetallic compounds $RE$In$_{3}$ ($RE={\rm rare}$ earth) have attracted much attention due to their unique characteristics: crystal field effect, Kondo effect, superconductivity, heavy fermion, and antiferromagnetism, and their cobalt diluted alloys exhibit the ferromagnetic half-metallic characteristics at room temperature. In this study, an empirical electron theory (EET) is employed to investigate systemically the valence electronic structure, the thermal and magnetic properties of $REX_{3}$ and their cobalt diluted alloys for revealing the mechanism of physical properties. The calculated bond length, melting point, and magnetic moment match the experimental ones very well. The study reveals that structural stability and physical properties of $REX_{3}$ and their cobalt dilute alloys are strongly related to their valence electron structures. It is suggested that the structural stability and cohesive energy depend upon the covalent electron, the melting point is modulated by covalent electron pair, and the magnetic moment is originated from 3d magnetic electron. The ferromagnetic characteristics of Co-diluted $RE$In$_{3}$ alloys is originated from the introduction of strong ferromagnetic Co atom, but, a competition is caused between the electron transition from valence electron to magnetic electron on d orbit and its reversal electron transformation with increasing the content of cobalt, which results in the formations of diluted magnetic Gd(In,Co)$_{3}$ alloy with minor amount of cobalt and strong magnetic Nd(In,Co)$_{3}$ alloy with doping more Co atoms.
Keywords:  $REX_{3}$      cobalt dilute alloy      valence electron structures      empirical electron theory      moment  
Received:  15 May 2024      Revised:  20 August 2024      Accepted manuscript online:  30 August 2024
PACS:  61.50.Lt (Crystal binding; cohesive energy)  
  75.50.-y (Studies of specific magnetic materials)  
  78.40.Kc (Metals, semimetals, and alloys)  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
Corresponding Authors:  Yongquan Guo     E-mail:  yqguo@ncepu.edu.cn

Cite this article: 

Boyang Li(李博洋), Yongquan Guo(郭永权), Yi-Chen Feng(冯奕晨), Xinze Wang(王鑫泽), and Wei Liu(刘葳) Valence electron structures dependences of structural stability and properties of REX3(RE=rare earth; X=In, Tl) and RE(In, Co)3 alloys 2024 Chin. Phys. B 33 116102

[1] Kletowski Z 1992 Solid State Commun. 83 241
[2] Settai R, Kubo T, Matsuda T D, Haga Y, Ōnuki Y and Harima H 2006 Physica B 378-380 417
[3] Kletowski Z, Fabrowski R, Slawiński P and Henkie Z 1997 J. Magn. Magn. Mater. 166 361
[4] Kletowski Z, Czopnik A, Tal A and De Boer F 2000 Physica B 281-282 163
[5] Umehara I, Ebihara T, Nagai N, Fujimaki Y, Satoh K and Ōnuki Y 1992 J. Phys. Soc. Jpn. 61 19
[6] Hale L, Gschneidner K A, Pecharsky V K and Mudryk Y 2009 J. Alloys Compd. 472 24
[7] Cabrera-Pasca G A, Mestnik-Filho J, Carbonari A W and Saxena R N 2013 J. Appl. Phys. 113 17
[8] Silva L S, Peixoto E B, Mercena S G, Coelho A A, Meneses C T and Duque J G S 2016 Mater. Lett. 175 9
[9] Silva L S, Peixoto E B, Mercena S G, Coelho A A, Meneses C T and Duque J G S 2016 J. Supercond. Nov. Magn. 29 423
[10] Wang C, Guo Y Q and Yang S W 2019 Chin. Phys. B 28 086101
[11] Fulfer B W, McAlpin J D, Engelkemier J, McCandless G T, Prestigiacomo J, Stadler S, Fredrickson D C and Chan J Y 2014 Chem. Mater. 26 1170
[12] Guo Y, Grin Y, Schnelle W and Li W 2007 J. Appl. Phys. 101 09N505
[13] Chen S, Guo Y and He Q 2015 J. Appl. Phys. 117 123910
[14] De Negri S, Kaczorowski D, Grytsiv A, Alleno E, Giovannini M, Gorzelniak R, Rogl P, Godart C, Saccone A and Ferro R 2004 J. Alloys Compd. 365 58
[15] Singh S, Dhar S K, Manfrinetti P and Palenzona A 2002 J. Magn. Magn. Mater. 250 190
[16] Dhar S K, Manfrinetti P and Palenzona A 2002 Solid State Commun. 124 379
[17] Liu Y S, Sun H, Hu C S, Wu Y J and Zhang C W 2023 Chin. Phys. B 32 027101
[18] Nie Y, Tang G, Li Y, Zhang M and Zhao X 2024 Chin. Phys. B 33 047301
[19] Chen Q, Wu J, Chen T, Wang X, Ding C, Huang T, Lu Q and Sun J 2022 Chin. Phys. B 31 056201
[20] Antonov V N 2014 Low Temp. Phys. 40 297
[21] Asadabadi S J and Akbarzadeh H 2004 Physica B 349 76
[22] Betsuyaku K and Harima H 2004 J. Magn. Magn. Mater. 272-276 1005
[23] BabanlıA M and Ibragimov B G 2017 Superlattices Microstruct. 111 574
[24] Guo X P, Guo Y Q and Yin L H 2021 J. Phys. Chem. C 125 20503
[25] Guo Y, Su T, Zhang J, Wang X, Chen Y and Zhao X 2020 ACS Appl. Energy Mater. 3 5361
[26] Guo Y, Yü R, Zhang R, Zhang X and Tao K 1998 J. Phys. Chem. B 102 9
[27] Wang T, Guo Y Q and Li S 2017 Chin. Phys. B 26 103101
[28] Xue Z Q and Guo Y Q 2016 Chin. Phys. B 25 063101
[29] Yin L, Guo Y and Guo X 2022 Inorg. Chem. 61 2402
[30] Wang T, Guo Y Q and Wang C 2021 Chin. Phys. B 30 043101
[31] Anon 1981 Acta Crystallogr. Sect. A 37 144
[32] Yatsenko S P, Semyannikov A A, Shakarov H O and Fedorova E G 1983 J. Common Met. 90 95
[33] Saccone A, Delfino S and Ferro R 1988 J. Common Met. 143 1
[34] He Q 2016 Structural stability and Dilute magnetic effect of Minor Codoped Rare-Earth In-based 1:3 Compounds, MS dissertation (Beijing: North China Electric Power University (Beijing))
[1] Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
Guangqi Fan(樊光琦), Zhijie Yang(杨志杰), Fenghao Sun(孙烽豪), Jinmei Zheng(郑金梅), Yuntian Han(韩云天), Mingqian Huang(黄明谦), and Qingcao Liu(刘情操). Chin. Phys. B, 2024, 33(8): 083102.
[2] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[3] Ultrafast photoemission electron microscopy: A multidimensional probe of nonequilibrium physics
Yanan Dai(戴亚南). Chin. Phys. B, 2024, 33(3): 038703.
[4] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[5] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[6] A model for fast electron-driven high-density plasma in the double-cone ignition scheme
Zhong-Yi Chen(陈忠义), Kai-Ge Zhao(赵凯歌), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(11): 115202.
[7] Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum
Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2024, 33(11): 117501.
[8] Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses
Si-Qi Zhang(张思琪), Jun Zhang(张军), Xin-Yu Hao(郝欣宇), Jing Guo(郭静), Aihua Liu(刘爱华), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2024, 33(10): 103301.
[9] Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires
Guang-Yu Zhu(祝光宇), Ji-Ai Ning(宁纪爱), Jian-Kun Wang(王建坤), Xin-Jie Liu(刘心洁), Jia-Jie Yang(杨佳洁), Ben-Chuan Lin(林本川), and Shuo Wang(王硕). Chin. Phys. B, 2024, 33(1): 017305.
[10] Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses
Haojing Yang(杨浩婧), Xiaoyu Liu(刘晓煜), Fengzheng Zhu(朱风筝), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2024, 33(1): 013303.
[11] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[12] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[13] Unusual magnetic relaxation in a single-molecule magnet with toroidal magnetic moments
Dan Su(苏丹), Yi-Quan Zhang(张义权), En-Ke Liu(刘恩克), and Yang Sun(孙阳). Chin. Phys. B, 2023, 32(8): 087505.
[14] Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method
Min-Na Qiao(乔敏娜), Lu-Hua Liu(刘鲁华), Bo-Song Cai(蔡柏松), Ya-Ting Zhang(张雅婷),Qing-Lan Wang(王晴岚), Jia-Hao Xu(徐家豪), and Qi Liu(刘祺). Chin. Phys. B, 2023, 32(5): 050702.
[15] Quantum entangled fractional Fourier transform based on the IWOP technique
Ke Zhang(张科), Lan-Lan Li(李兰兰), Pan-Pan Yu(余盼盼), Ying Zhou(周莹),Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040302.
No Suggested Reading articles found!