|
|
Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms |
Chao Zeng(曾超)1,2,3, Yue-Ran Shi(石悦然)4,5, Yi-Yi Mao(毛一屹)1,2,3, Fei-Fei Wu(武菲菲)1,2,3, Yan-Jun Xie(谢岩骏)1,2,3, Tao Yuan(苑涛)1,2,3, Han-Ning Dai(戴汉宁)1,2,3,†, and Yu-Ao Chen(陈宇翱)1,2,3 |
1 Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; 2 Shanghai Research Center for Quantum Sciences and CAS Center for Excellence Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; 3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China; 4 Department of Physics, Renmin University of China, Beijing 100872, China; 5 Key Laboratory of Quantum State Constructuion and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China |
|
|
Abstract We investigated the one-dimensional diamond ladder in the momentum lattice platform. By inducing multiple two- and four-photon Bragg scatterings among specific momentum states, we achieved a flat band system based on the diamond model, precisely controlling the coupling strength and phase between individual lattice sites. Utilizing two lattice sites couplings, we generated a compact localized state associated with the flat band, which remained localized throughout the entire time evolution. We successfully realized the continuous shift of flat bands by adjusting the corresponding nearest neighbor hopping strength, enabling us to observe the complete localization process. This opens avenues for further exploration of more complex properties within flat-band systems, including investigating the robustness of flat-band localized states in disordered flat-band systems and exploring many-body localization in interacting flat-band systems.
|
Received: 06 November 2023
Revised: 13 November 2023
Accepted manuscript online: 16 November 2023
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074367), Anhui Initiative in Quantum Information Technologies, the National Key Research and Development Program of China (Grant No. 2020YFA0309804), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB35020200), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302002), and New Cornerstone Science Foundation. |
Corresponding Authors:
Han-Ning Dai
E-mail: daihan@ustc.edu.cn
|
Cite this article:
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱) Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms 2024 Chin. Phys. B 33 010303
|
[1] Lagendijk A, van Tiggelen B and Wiersma D 2009 Phys. Today 62 24 [2] Anderson P W 1958 Phys. Rev. 109 1492 [3] Basko D, Aleiner I and Altshuler B 2006 Ann. Phys. 321 1126 [4] Nandkishore R and Huse D 2015 Annu. Rev. Conden. Matt. Phys. 6 15 [5] Derzhko O and Richter J 2006 Eur. Phys. J. B 52 23 [6] Derzhko O, Richter J, Honecker A, Maksymenko M and Moessner R 2010 Phys. Rev. B 81 014421 [7] Niţǎ M, Ostahie B and Aldea A 2013 Phys. Rev. B 87 125428 [8] Leykam D, Andreanov A and Flach S 2018 Adv. Phys. X 3 1473052 [9] Leykam D and Flach S 2018 APL Photonics 3 070901 [10] Leykam D, Flach S, Bahat-Treidel O and Desyatnikov A 2013 Phys. Rev. B 88 224203 [11] Leykam D, Bodyfelt J D, Desyatnikov A S and Flach S 2017 Eur. Phys. J. B 90 1 [12] Goda M, Nishino S and Matsuda H 2006 Phys. Rev. Lett. 96 126401 [13] Li H, Dong Z, Longhi S, Liang Q, Xie D and Yan B 2022 Phys. Rev. Lett. 129 220403 [14] Jo G B, Guzman J, Thomas C, Hosur P, Vishwanath A and Stamper-Kurn D 2012 Phys. Rev. Lett. 108 045305 [15] Taie S, Ozawa H, Ichinose T, Nishio T, Nakajima S and Takahashi Y 2015 Sci. Adv. 1 e1500854 [16] Luo X and Zhang C 2021 Phys. Rev. Lett. 126 103201 [17] Baboux F, Ge L, Jacqmin T, Biondi M, Galopin E, Lemaître A, Gratiet L L, Sagnes I, Schmidt S, Türeci H E, Amo A and Bloch J 2016 Phys. Rev. Lett. 116 066402 [18] Harder T H, Egorov O A, Beierlein J, Gagel P, Michl J, Emmerling M, Schneider C, Peschel U, Höfling S and Klembt S 2020 Phys. Rev. B 102 121302 [19] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejía-Cortés C, Weimann S, Szameit A and Molina M I 2015 2015 Phys. Rev. Lett. 114 245503 [20] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E and Thomson R R 2015 Phys. Rev. Lett. 114 245504 [21] Mukherjee S and Thomson R R 2015 Opt. Lett. 40 5443 [22] Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O and Szameit A 2020 Nat. Commun. 11 907 [23] Xia S, Ramachandran A, Xia S, Li D, Liu X, Tang L, Hu Y, Song D, Xu J, Leykam D, Flach S and Chen Z 2018 Phys. Rev. Lett. 121 263902 [24] Gadway B 2015 Phys. Rev. A 92 043606 [25] An F A, Meier E J and Gadway B 2018 Phys. Rev. X 8 031045 [26] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L and Gadway B 2018 Science 362 929 [27] Meier E J, Ngan K, Sels D and Gadway B 2020 Phys. Rev. Research 2 043201 [28] An F A, Sundar B, Hou J, Luo X, Meier E J, Zhang C, Hazzard K R A and Gadway B 2021 Phys. Rev. Lett. 127 130401 [29] Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W and Yan B 2022 Phys. Rev. Lett. 129 070401 [30] Longhi S 2021 Opt. Lett. 46 2872 [31] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485 [32] Vidal J, Mosseri R and Douçot B 1998 Phys. Rev. Lett. 81 5888 [33] Jiao Z, Longhi S, Wang X, Gao J, Zhou W, Wang Y, Fu Y, Wang L, Ren R, Qiao L and Jin X 2021 Phys. Rev. Lett. 127 147401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|