CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires |
Guang-Yu Zhu(祝光宇)1,2,†, Ji-Ai Ning(宁纪爱)1,2,†, Jian-Kun Wang(王建坤)1,2,†, Xin-Jie Liu(刘心洁)1,2, Jia-Jie Yang(杨佳洁)1,2, Ben-Chuan Lin(林本川)1,2,3,‡, and Shuo Wang(王硕)1,2,3,§ |
1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 2 International Quantum Academy, Shenzhen 518048, China; 3 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Spin—momentum locking is a key feature of the topological surface state, which plays an important role in spintronics. The electrical detection of current-induced spin polarization protected by the spin—momentum locking in nonmagnetic systems provides a new platform for developing spintronics, while previous studies were mostly based on magnetic materials. In this study, the spin transport measurement of Dirac semimetal Cd3As2 was studied by three-terminal geometry, and a hysteresis loop signal with high resistance and low resistance state was observed. The hysteresis was reversed by reversing the current direction, which illustrates the spin—momentum locking feature of Cd3As2. Furthermore, we realized the on—off states of the spin signals through electric modulation of the Fermi arc via the three-terminal configuration, which enables the great potential of Cd3As2 in spin field-effect transistors.
|
Received: 27 March 2023
Revised: 04 June 2023
Accepted manuscript online: 25 June 2023
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.21.Hb
|
(Quantum wires)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0309300 and 2022YFA1403700), the National Natural Science Foundation of China (Grant Nos. 12004158, 12074162, and 91964201), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030327001), Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515130005). |
Corresponding Authors:
Ben-Chuan Lin, Shuo Wang
E-mail: linbc@sustech.edu.cn;wangs6@sustech.edu.cn
|
Cite this article:
Guang-Yu Zhu(祝光宇), Ji-Ai Ning(宁纪爱), Jian-Kun Wang(王建坤), Xin-Jie Liu(刘心洁), Jia-Jie Yang(杨佳洁), Ben-Chuan Lin(林本川), and Shuo Wang(王硕) Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires 2024 Chin. Phys. B 33 017305
|
[1] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280 [2] Lv B Q, Qian T and Ding H 2021 Rev. Mod. Phys. 93 025002 [3] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B 2015 Nat. Phys. 11 645 [4] Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z, Jia S, Xie X C and Wang J 2015 Phys. Rev. X 5 031037 [5] Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137 [6] Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301 [7] Jia Z, Li C, Li X, Shi J, Liao Z, Yu D and Wu X 2016 Nat. Commun. 7 13013 [8] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413 [9] Cai P L, Hu J, He L P, Pan J, Hong X C, Zhang Z, Zhang J, Wei J, Mao Z Q and Li S Y 2015 Phys. Rev. Lett. 115 057202 [10] Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642 [11] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [12] Fang C, Lu L, Liu J and Fu L 2016 Nat. Phys. 12 936 [13] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [14] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [15] Moll P J, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A and Analytis J G 2016 Nature 535 266 [16] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161 [17] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N and Zhang X X 2017 Nat. Commun. 8 2150 [18] Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J and Hasan M Z 2015 Science 347 294 [19] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613 [20] Li C H, Erve O M J, Robinson J T, Liu Y, Li L and Jonker B T 2014 Nat. Nanotechnol. 9 218 [21] Tang J, Chang L T, Kou X, Murata K, Choi E S, Lang M, Fan Y, Jiang Y, Montazeri M, Jiang W, Wang Y, He L and Wang K L 2014 Nano Lett. 14 5423 [22] Li P, Wu W, Wen Y, Zhang C, Zhang J, Zhang S, Yu Z, Yang S A, Manchon A and Zhang X X 2018 Nat. Commun. 9 3990 [23] Ning J, Peng W, Wang W, Chen Z, Yang P, Chen Y, Zhao Y, Sun Y, Kanagaraj M, Yang L, Gao Q, Zhang J, Zhao D, Pan D, Ruan X, Li Y, Liu W, He L, Chen Z G and Xu Y 2021 Phys. Rev. B 104 035429 [24] Lin B C, Wang S, Wang A Q, Li Y, Li R R, Xia K, Yu D and Liao Z M 2020 Phys. Rev. Lett. 124 116802 [25] Han J, Richardella A, Siddiqui S A, Finley J, Samarth N and Liu L 2017 Phys. Rev. Lett. 119 077702 [26] Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y and Yang H 2017 Nat. Commun. 8 1364 [27] Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M and Tokura Y 2017 Phys. Rev. Lett. 119 137204 [28] Ando Y, Hamasaki T, Kurokawa T, Ichiba K, Yang F, Novak M, Sasaki S, Segawa K, Ando Y and Shiraishi M 2014 Nano Lett. 14 6226 [29] Lin B C, Wang S, Wang L X, Li C Z, Li J G, Yu D, Liao Z M 2017 Phys. Rev. B 95 235436 [30] Tang J, Wang C Y, Chang L T, Fan Y, Nie T, Chan M, Jiang W, Chen Y T, Yang H J, Tuan H Y, Chen L J and Wang K L 2013 Nano Lett. 13 4036 [31] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [32] Wang H L, Ma J L and Wei Q Q 2020 J. Semicond. 41 072903 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|