|
|
Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses |
Haojing Yang(杨浩婧)1, Xiaoyu Liu(刘晓煜)1, Fengzheng Zhu(朱风筝)2, Liguang Jiao(焦利光)3,4,†, and Aihua Liu(刘爱华)1,5,‡ |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China; 3 College of Physics, Jilin University, Changchun 130012, China; 4 Helmholtz-Institut Jena, D-07743 Jena, Germany; 5 State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences, Xi'an 710119, China |
|
|
Abstract Molecular-frame photoelectron momentum distributions (MF-PMDs) of an H2+ molecule ion in the presence of a pair of counter-rotating circularly polarized attosecond extreme ultraviolet laser pulses is studied by numerically solving the two-dimensional time-dependent Schrödinger equation within the frozen-nuclei approximation. At small time delay, our simulations show that the electron vortex structure is sensitive to the time delay and relative phase between the counter-rotating pulses when they are partially overlapped. By adjusting time delay and relative phase, we have the ability to manipulate the MF-PMDs and the appearance of spiral arms. We further show that the internuclear distance can affect the spiral vortices due to its different transition cross sections in the parallel and perpendicular geometries. The lowest-order perturbation theory is employed to interpret these phenomena qualitatively. It is concluded that the internuclear distance-dependent transition cross sections and the confinement effect in diatomic molecules are responsible for the variation of vortex structures in the MF-PMDs.
|
Received: 31 August 2023
Revised: 28 September 2023
Accepted manuscript online: 07 October 2023
|
PACS:
|
33.80.-b
|
(Photon interactions with molecules)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
87.15.mn
|
(Photoionization)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
Fund: Project supported by the Natural Science Foundation of Jilin Province, China (Grant No. 20220101016JC), the National Key Research and Development Program of China (Grant No. 2022YFE0134200), the National Natural Science Foundation of China (Grant Nos. 12174147, 91850114, and 11774131), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics. Part of the numerical simulation was done on the high-performance computing cluster Tiger@IAMP in Jilin University. |
Corresponding Authors:
Liguang Jiao, Aihua Liu
E-mail: lgjiao@jlu.edu.cn;aihualiu@jlu.edu.cn
|
Cite this article:
Haojing Yang(杨浩婧), Xiaoyu Liu(刘晓煜), Fengzheng Zhu(朱风筝), Liguang Jiao(焦利光), and Aihua Liu(刘爱华) Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses 2024 Chin. Phys. B 33 013303
|
[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545 [2] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [3] Chang Z and Corkum P 2010 J. Opt. Soc. Am. B 27 B9 [4] Wittmann T, Horvath B, Helml W, Schätzel M G, Gu X, Cavalieri A L, Paulus G and Kienberger R 2009 Nat. Phys. 5 357 [5] tatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F and Corkum P B 2002 Phys. Rev. Lett. 88 173903 [6] Kitzler M, Milosevic N, Scrinzi A, Krausz F and Brabec T 2002 Phys. Rev. Lett. 88 173904 [7] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565 [8] Zhang H D, Ben S, Xu T T, Song K L, Tian Y R, Xu Q Y, Zhang S Q, Guo J and Liu X S 2018 Phys. Rev. A 98 013422 [9] Yuan K J, Chelkowski S and Bandrauk A D 2015 J. Chem. Phys. 142 144304 [10] Yuan K J, Chelkowski S and Bandrauk A D 2016 Phys. Rev. A 93 053425 [11] Wu W Y and He F 2016 Phys. Rev. A 93 023415 [12] Yuan K J and Bandrauk A D 2017 Phys. Chem. Chem. Phys. 19 25846 [13] Yuan K J, Shu C C, Dong D and Bandrauk A D 2017 J. Phys. Chem. Lett. 8 2229 [14] Yuan K J and Bandrauk A D 2019 J. Phys. Chem. A 123 1328 [15] Yuan K J, Chelkowski S and Bandrauk A D 2015 Chem. Phys. Lett. 638 173 [16] Murakami M and Chu S I 2016 Phys. Rev. A 93 023425 [17] Yuan K J, Lu H and Bandrauk A D 2017 Structural Chemistry 28 1297 [18] Xie X, Wang T, Yu S, Lai X, et al. 2017 Phys. Rev. Lett. 119 243201 [19] Odenweller M, Takemoto N, Vredenborg A, Cole K, Pahl K, Titze J, Schmidt L P H, Jahnke T, Dörner R and Becker A 2011 Phys. Rev. Lett. 107 143004 [20] Hernández-García C, Vieira J, Mendonca J T, Rego L, San Román J, Plaja L, Ribic P R, Gauthier D and Picón A 2017 Photonics 4 28 [21] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M and Yuan X 2019 Light:Science & Applications 90 697 [22] Djiokap J N, Meremianin A V, Manakov N, Hu S, Madsen L and Starace A F 2016 Phys. Rev. A 94 013408 [23] Lloyd S, Babiker M, Thirunavukkarasu G and Yuan J 2017 Rev. Mod. Phys. 89 035004 [24] Djiokap J N, Hu S, Madsen L, Manakov N, Meremianin A and Starace A F 2015 Phys. Rev. Lett. 115 113004 [25] Li M, Zhang G, Kong X, Wang T, Ding X and Yao J 2018 Opt. Express 26 878 [26] Ovchinnikov S Y, Sternberg J, Macek J, Lee T G and Schultz D R 2010 Phys. Rev. Lett. 105 203005 [27] Harris M, Hill C and Vaughan J 1994 Opt. Commun. 106 161 [28] Djiokap J N, Meremianin A, Manakov N, Hu S, Madsen L and Starace A F 2017 Phys. Rev. A 96 013405 [29] Chen Z, He P L and He F 2020 Phys. Rev. A 101 033406 [30] Zhen Q, Zhang H D, Zhang S Q, Ji L, Han T and Liu X S 2020 Chem. Phys. Lett. 738 136885 [31] Vélez F C, Geng L, Kamiński J, Peng L Y and Krajewska K 2020 Phys. Rev. A 102 043102 [32] Geng L, Vélez F C, Kamiński J, Peng L Y and Krajewska K 2020 Phys. Rev. A 102 043117 [33] Guo Y, Liu A, Wang J and Liu X 2019 Chin. Phys. B 28 094212 [34] Han J X, Wang J, Qiao Y, Liu A H, Guo F M and Yang Y J 2019 Opt. Express 27 8768 [35] Wang J, Liu A and Yuan K J 2020 Opt. Commun. 460 125216 [36] Horner D A, Miyabe S, Rescigno T N, McCurdy C W, Morales F and Martín F 2008 Phys. Rev. Lett. 101 183002 [37] Guan X, Secor E B, Bartschat K and Schneider B I 2012 Phys. Rev. A 85 043419 [38] Gräfe S, Engel V and Ivanov M Y 2008 Phys. Rev. Lett. 101 103001 [39] He F, Becker A and Thumm U 2008 Phys. Rev. Lett. 101 213002 [40] Guan X, Secor E B, Bartschat K and Schneider B I 2011 Phys. Rev. A 84 033420 [41] Guan X, DuToit R C and Bartschat K 2013 Phys. Rev. A 87 053410 [42] Yuan K J and Bandrauk A D 2012 Phys. Rev. A 85 013413 [43] Feit M, Fleck J Jr and Steiger A 1982 J. Comput. Phys. 47 412 [44] Liu X Y, Gao S, Liu A, Jiao L G and Zhu F Z 2023 Commun. Theor. Phys. 75 035503 [45] Pronin E A, Starace A F, Frolov M V and Manakov N L 2009 Phys. Rev. A 80 063403 [46] Pronin E A, Starace A F and Peng L Y 2011 Phys. Rev. A 84 013417 [47] Yuan K J and Bandrauk A D 2015 Phys. Rev. A 92 063401 [48] Ma M Y, Wang J P, Jing W Q, Guan Z, Jiao Z H, Wang G L, Chen J H and Zhao S F 2021 Opt. Express 29 33245 [49] Fernández J, Fojón O, Palacios A and Martín F 2007 Phys. Rev. Lett. 98 043005 [50] Pengel D, Kerbstadt S, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. A 96 043426 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|