Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 013303    DOI: 10.1088/1674-1056/ad011a
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses

Haojing Yang(杨浩婧)1, Xiaoyu Liu(刘晓煜)1, Fengzheng Zhu(朱风筝)2, Liguang Jiao(焦利光)3,4,†, and Aihua Liu(刘爱华)1,5,‡
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China;
3 College of Physics, Jilin University, Changchun 130012, China;
4 Helmholtz-Institut Jena, D-07743 Jena, Germany;
5 State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract  Molecular-frame photoelectron momentum distributions (MF-PMDs) of an H2+ molecule ion in the presence of a pair of counter-rotating circularly polarized attosecond extreme ultraviolet laser pulses is studied by numerically solving the two-dimensional time-dependent Schrödinger equation within the frozen-nuclei approximation. At small time delay, our simulations show that the electron vortex structure is sensitive to the time delay and relative phase between the counter-rotating pulses when they are partially overlapped. By adjusting time delay and relative phase, we have the ability to manipulate the MF-PMDs and the appearance of spiral arms. We further show that the internuclear distance can affect the spiral vortices due to its different transition cross sections in the parallel and perpendicular geometries. The lowest-order perturbation theory is employed to interpret these phenomena qualitatively. It is concluded that the internuclear distance-dependent transition cross sections and the confinement effect in diatomic molecules are responsible for the variation of vortex structures in the MF-PMDs.
Keywords:  photoelectron momentum distribution      attosecond pulse      vortex  
Received:  31 August 2023      Revised:  28 September 2023      Accepted manuscript online:  07 October 2023
PACS:  33.80.-b (Photon interactions with molecules)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  87.15.mn (Photoionization)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the Natural Science Foundation of Jilin Province, China (Grant No. 20220101016JC), the National Key Research and Development Program of China (Grant No. 2022YFE0134200), the National Natural Science Foundation of China (Grant Nos. 12174147, 91850114, and 11774131), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics. Part of the numerical simulation was done on the high-performance computing cluster Tiger@IAMP in Jilin University.
Corresponding Authors:  Liguang Jiao, Aihua Liu     E-mail:  lgjiao@jlu.edu.cn;aihualiu@jlu.edu.cn

Cite this article: 

Haojing Yang(杨浩婧), Xiaoyu Liu(刘晓煜), Fengzheng Zhu(朱风筝), Liguang Jiao(焦利光), and Aihua Liu(刘爱华) Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses 2024 Chin. Phys. B 33 013303

[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[3] Chang Z and Corkum P 2010 J. Opt. Soc. Am. B 27 B9
[4] Wittmann T, Horvath B, Helml W, Schätzel M G, Gu X, Cavalieri A L, Paulus G and Kienberger R 2009 Nat. Phys. 5 357
[5] tatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F and Corkum P B 2002 Phys. Rev. Lett. 88 173903
[6] Kitzler M, Milosevic N, Scrinzi A, Krausz F and Brabec T 2002 Phys. Rev. Lett. 88 173904
[7] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565
[8] Zhang H D, Ben S, Xu T T, Song K L, Tian Y R, Xu Q Y, Zhang S Q, Guo J and Liu X S 2018 Phys. Rev. A 98 013422
[9] Yuan K J, Chelkowski S and Bandrauk A D 2015 J. Chem. Phys. 142 144304
[10] Yuan K J, Chelkowski S and Bandrauk A D 2016 Phys. Rev. A 93 053425
[11] Wu W Y and He F 2016 Phys. Rev. A 93 023415
[12] Yuan K J and Bandrauk A D 2017 Phys. Chem. Chem. Phys. 19 25846
[13] Yuan K J, Shu C C, Dong D and Bandrauk A D 2017 J. Phys. Chem. Lett. 8 2229
[14] Yuan K J and Bandrauk A D 2019 J. Phys. Chem. A 123 1328
[15] Yuan K J, Chelkowski S and Bandrauk A D 2015 Chem. Phys. Lett. 638 173
[16] Murakami M and Chu S I 2016 Phys. Rev. A 93 023425
[17] Yuan K J, Lu H and Bandrauk A D 2017 Structural Chemistry 28 1297
[18] Xie X, Wang T, Yu S, Lai X, et al. 2017 Phys. Rev. Lett. 119 243201
[19] Odenweller M, Takemoto N, Vredenborg A, Cole K, Pahl K, Titze J, Schmidt L P H, Jahnke T, Dörner R and Becker A 2011 Phys. Rev. Lett. 107 143004
[20] Hernández-García C, Vieira J, Mendonca J T, Rego L, San Román J, Plaja L, Ribic P R, Gauthier D and Picón A 2017 Photonics 4 28
[21] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M and Yuan X 2019 Light:Science & Applications 90 697
[22] Djiokap J N, Meremianin A V, Manakov N, Hu S, Madsen L and Starace A F 2016 Phys. Rev. A 94 013408
[23] Lloyd S, Babiker M, Thirunavukkarasu G and Yuan J 2017 Rev. Mod. Phys. 89 035004
[24] Djiokap J N, Hu S, Madsen L, Manakov N, Meremianin A and Starace A F 2015 Phys. Rev. Lett. 115 113004
[25] Li M, Zhang G, Kong X, Wang T, Ding X and Yao J 2018 Opt. Express 26 878
[26] Ovchinnikov S Y, Sternberg J, Macek J, Lee T G and Schultz D R 2010 Phys. Rev. Lett. 105 203005
[27] Harris M, Hill C and Vaughan J 1994 Opt. Commun. 106 161
[28] Djiokap J N, Meremianin A, Manakov N, Hu S, Madsen L and Starace A F 2017 Phys. Rev. A 96 013405
[29] Chen Z, He P L and He F 2020 Phys. Rev. A 101 033406
[30] Zhen Q, Zhang H D, Zhang S Q, Ji L, Han T and Liu X S 2020 Chem. Phys. Lett. 738 136885
[31] Vélez F C, Geng L, Kamiński J, Peng L Y and Krajewska K 2020 Phys. Rev. A 102 043102
[32] Geng L, Vélez F C, Kamiński J, Peng L Y and Krajewska K 2020 Phys. Rev. A 102 043117
[33] Guo Y, Liu A, Wang J and Liu X 2019 Chin. Phys. B 28 094212
[34] Han J X, Wang J, Qiao Y, Liu A H, Guo F M and Yang Y J 2019 Opt. Express 27 8768
[35] Wang J, Liu A and Yuan K J 2020 Opt. Commun. 460 125216
[36] Horner D A, Miyabe S, Rescigno T N, McCurdy C W, Morales F and Martín F 2008 Phys. Rev. Lett. 101 183002
[37] Guan X, Secor E B, Bartschat K and Schneider B I 2012 Phys. Rev. A 85 043419
[38] Gräfe S, Engel V and Ivanov M Y 2008 Phys. Rev. Lett. 101 103001
[39] He F, Becker A and Thumm U 2008 Phys. Rev. Lett. 101 213002
[40] Guan X, Secor E B, Bartschat K and Schneider B I 2011 Phys. Rev. A 84 033420
[41] Guan X, DuToit R C and Bartschat K 2013 Phys. Rev. A 87 053410
[42] Yuan K J and Bandrauk A D 2012 Phys. Rev. A 85 013413
[43] Feit M, Fleck J Jr and Steiger A 1982 J. Comput. Phys. 47 412
[44] Liu X Y, Gao S, Liu A, Jiao L G and Zhu F Z 2023 Commun. Theor. Phys. 75 035503
[45] Pronin E A, Starace A F, Frolov M V and Manakov N L 2009 Phys. Rev. A 80 063403
[46] Pronin E A, Starace A F and Peng L Y 2011 Phys. Rev. A 84 013417
[47] Yuan K J and Bandrauk A D 2015 Phys. Rev. A 92 063401
[48] Ma M Y, Wang J P, Jing W Q, Guan Z, Jiao Z H, Wang G L, Chen J H and Zhao S F 2021 Opt. Express 29 33245
[49] Fernández J, Fojón O, Palacios A and Martín F 2007 Phys. Rev. Lett. 98 043005
[50] Pengel D, Kerbstadt S, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. A 96 043426
[1] Diffraction deep neural network-based classification for vector vortex beams
Yixiang Peng(彭怡翔), Bing Chen(陈兵), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034205.
[2] Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields
Si-Qi Zhang(张思琪), Bing Zhang(张冰), Bo Yan(闫博), Xiang-Qian Jiang(姜向前), and Xiu-Dong Sun(孙秀冬). Chin. Phys. B, 2024, 33(2): 023301.
[3] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[4] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[5] Detection accuracy of target accelerations based on vortex electromagnetic wave in keyhole space
Kai Guo(郭凯), Shuang Lei(雷爽), Yi Lei(雷艺), Hong-Ping Zhou(周红平), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2024, 33(2): 020603.
[6] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[7] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[8] Young's double slit interference with vortex source
Qilin Duan(段琦琳), Pengfei Zhao(赵鹏飞), Yuhang Yin(殷玉杭), and Huanyang Chen(陈焕阳). Chin. Phys. B, 2024, 33(1): 014202.
[9] Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates
Huaping Zang(臧华平), Baozhen Wang(王宝珍), Chenglong Zheng(郑程龙), Lai Wei(魏来), Quanping Fan(范全平), Shaoyi Wang(王少义), Zuhua Yang(杨祖华), Weimin Zhou(周维民), Leifeng Cao(曹磊峰), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(1): 014209.
[10] Elliptically polarized high-order harmonic generation in nitrogen molecules with cross-linearly polarized two-color laser fields
Chunyang Zhai(翟春洋), Yinmeng Wu(吴银梦), Lingling Qin(秦玲玲), Xiang Li(李翔), Luke Shi(史璐珂), Ke Zhang(张可), Shuaijie Kang(康帅杰), Zhengfa Li(李整法), Yingbin Li(李盈傧), Qingbin Tang(汤清彬), and Benhai Yu(余本海). Chin. Phys. B, 2023, 32(7): 073301.
[11] Generation of quasi-chirp-free isolated attosecond pulses from atoms under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields
Rui-Xian Yu(蔚瑞贤), Yue Qiao(乔月), Ping Li(李萍), Jun Wang(王俊), Ji-Gen Chen(陈基根), Wei Feng(冯伟), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2023, 32(6): 063302.
[12] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[13] Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level
Delong Fang(方德龙) and Yunkang Cui(崔云康). Chin. Phys. B, 2023, 32(5): 057401.
[14] Three-dimensional color particle image velocimetry based on a cross-correlation and optical flow method
Liang Shan(单良), Jun-Zhe Xiong(熊俊哲), Fei-Yang Shi(施飞杨), Bo Hong(洪波), Juan Jian(简娟), Hong-Hui Zhan(詹虹晖), and Ming Kong(孔明). Chin. Phys. B, 2023, 32(5): 054702.
[15] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
No Suggested Reading articles found!