Unusual magnetic relaxation in a single-molecule magnet with toroidal magnetic moments
Dan Su(苏丹)1,2, Yi-Quan Zhang(张义权)3, En-Ke Liu(刘恩克)1,2, and Yang Sun(孙阳)1,4,†
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3. School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China; 4. Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
Abstract We report the synthesis and characterization of a single-molecule magnet composed of triangular clusters of dysprosium ions. The structural study shows that the symmetry changes from one polar point group (mm2) at room temperature to another polar point group (m) at low temperature. Magnetic studies and theory calculations illustrate that the vortex distribution of magnetic dipoles in the triangular dysprosium clusters forms a toroidal magnetic moment. Interestingly, the analysis of AC magnetic susceptibility reveals the coexistence of three distinct magnetic relaxation processes, corresponding to the Raman, Orbach, and QTM relaxation pathways, respectively. The sum of three modified Debye functions is successfully used to describe the multiple relaxation behavior.
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1400303) and the National Natural Science Foundation of China (Grant No.12227806).
Corresponding Authors:
Yang Sun
E-mail: youngsun@cqu.edu.cn
Cite this article:
Dan Su(苏丹), Yi-Quan Zhang(张义权), En-Ke Liu(刘恩克), and Yang Sun(孙阳) Unusual magnetic relaxation in a single-molecule magnet with toroidal magnetic moments 2023 Chin. Phys. B 32 087505
[1] Wernsdorfer W and Sessoli R 1999 Science284 133 [2] Zabala-Lekuona A, Seco J M and Colacio E 2021 Coord. Chem. Rev.441 213984 [3] Woodruff D N, Winpeeny R E P and Layfield R A 2013 Chem.113 5110 [4] Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W and Balestro F 2012 Nature488 357 [5] Bogani L and Wernsdorfer W 2008 Nat. Mater.7 179 [6] Long J, Guari Y, Ferreira R A S, Carlos L D and Larionova J 2018 Coord. Chem. Rev.363 57 [7] Leuenberger M N and Loss D 2001 Nature410 789 [8] Murray E K 2022 Single Molecule Toroics (Berlin: Springer) [9] Ungur L, Lin S Y, Tang J and Chibotaru L F 2014 Chem. Soc. Rev.43 6894 [10] Tang J, Hewitt I, Madhu N T, Chastanet G, Wernsdorfer W, Anson C E, Benelli C, Sessoli R and Powell A K 2006 Angew. Chem. Int. Ed.45 1729 [11] Ungur L, Langley S K, Hooper T N, Moubaraki B, Brechin E K, Murray K S and Chibotaru L F 2012 J. Am. Chem. Soc.134 18554 [12] Xue S, Chen X H, Zhao L, Guo Y N and Tang J 2012 Inorg. Chem.51 13264 [13] Zhang P, Zhang L, Wang C, Xue S, Lin S Y and Tang J K 2014 J. Am. Chem. Soc.136 4484 [14] Lin S Y, Wernsdorfer W, Ungur L, Powell A K, Guo Y N, Tang J, Zhao L and Chibotaru L F 2012 Angew. Chem. Int. Ed.51 12767 [15] Van Aken B B, Rivera J P, Schmid H and Fiebig M 2007 Nature449 702 [16] Chibotaru L F, Ungur L and Soncini A 2008 Angew. Chem.120 4194 [17] Wang Y X, Shi W, Li H, Song Y, Fang L, Lan Y, Powell A K, Wernsdorfer W, Ungur L, Chibotaru L F, Shen M and Cheng P 2012 Chem. Sci.3 3366 [18] Wang Y X, Ma Y N N, Wang J S, Yang Y, Guo Y N, Zhang Y Q, Jin K J, Sun Y and Cheng P 2022 Adv. Sci.9 2202979 [19] Langley S K, Vignesh K R, Gupta T, Gartshore C J, Rajaraman G, Forsyth C M and Murray K S 2019 Dalton Trans.48 15657 [20] Caporale C, Sobolev A N, Phonsri W, Murray K S, Swain A, Rajaraman G, Ogden M I, Massi M and Fuller R O 2020 Dalton Trans.49 17421 [21] Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M and Avnir D 2005 Coord. Chem. Rev.249 1693 [22] Aquilante F, Autschbach J, Carlson R K, Chibotaru L F, Delcey M G, De Vico L, Galván I F N, Ferré L M, Frutos L, Gagliardi M, Garavelli A, Giussani C E, Hoyer G L, Manni H, Lischka D M, Malmqvist P Å, Müller T, Nenov A, Olivucci M, Pedersen T B, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar D G, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy V P, Weingart O, Zapata F and Lindh R 2016 J. Comput. Chem.37 506 [23] Lines M E 1971 J. Chem. Phys.55 2977 [24] Mondal K C, Sundt A, Lan Y H, Kostakis G E, Waldmann O, Ungur L, Chibotaru L F, Anson C E and Powell A K 2012 Angew. Chem. Int. Ed.51 7550 [25] Langley S K, Wielechowski D P, Vieru V, Chilton N F, Moubaraki B, Abrahams B F, Chibotaru L F and Murray K S 2013 Angew. Chem. Int. Ed.52 12014 [26] Cole K S and Cole R H 1941 J. Chem. Phys.9 341 [27] Guo Y N, Xu G F, Wernsdorfer W, Ungur L, Guo Y, Tang J, Zhang H J, Chibotaru L F and Powell A K 2011 J. Am. Chem. Soc.133 11948 [28] Briganti M, Santanni F, Tesi L, Totti F, Sessoli R and Lunghi A 2021 J. Am. Chem. Soc.143 13633
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.