|
|
Momentum distributions of symmetric (H2+) and asymmetric (HeH2+) molecular ions in a circularly polarized laser field under different ionization mechanisms |
Xin-Yu Hao(郝欣宇), Shu-Juan Yan(闫淑娟), Ying Guo(郭颖), and Jing Guo(郭静)† |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract By numerically solving the two-dimensional (2D) time-dependent Schrödinger equation (TDSE), we present photoelectron momentum distributions (PMDs) and photoelectron angular distributions (PADs) of symmetric (${{\rm H}_{2}^{+}}$) and asymmetric (${{\rm HeH}^{2+}}$) molecular ions in circularly polarized (CP) laser pulses. By adjusting the laser wavelength, two circumstances of resonance excitation and direct ionization were considered. The ionization mechanism of the resonance excitation was mainly investigated. The results show that the PMDs of ${{\rm H}_{2}^{+}}$ and ${{\rm HeH}^{2+}}$ in the $y$-direction gradually increase with increasing intensity, and the number of PMDs lobes is in good agreement with the results predicted by the ultrafast ionization model. In the resonance excitation scenario, the PMDs of ${{\rm H}_{2}^{+}}$ are dominated by two-photon ionization, whereas the PMDs of HeH$^{2+}$ are dominated by three-photon ionization. Furthermore, the PMDs of ${{\rm HeH}^{2+}}$ are stronger in the resonance excitation scenario than those of ${{\rm H}_{2}^{+}}$, which can be explained by the time-dependent population of electrons. In addition, the molecular structure is clearly imprinted onto the PMDs.
|
Received: 13 May 2024
Revised: 11 September 2024
Accepted manuscript online: 18 September 2024
|
PACS:
|
34.80.Gs
|
(Molecular excitation and ionization)
|
|
32.80.-t
|
(Photoionization and excitation)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the Natural Science Foundation of Jilin Province (Grant No. 20220101010JC) and the National Natural Science Foundation of China (Grant No. 12074146). |
Corresponding Authors:
Jing Guo
E-mail: gjing@jlu.edu.cn
|
Cite this article:
Xin-Yu Hao(郝欣宇), Shu-Juan Yan(闫淑娟), Ying Guo(郭颖), and Jing Guo(郭静) Momentum distributions of symmetric (H2+) and asymmetric (HeH2+) molecular ions in a circularly polarized laser field under different ionization mechanisms 2024 Chin. Phys. B 33 123401
|
[1] Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127 [2] Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Luo S Z, Liu A H, He L H, Ma P, Zhang D D and Ding D J 2021 Chin. Phys. Lett. 38 053202 [3] Meng C S, Lü Z H, Wang X W, Zhang D W, Zhao Z X and Yuan J M 2022 Chin. Phys. Lett. 39 113701 [4] Yang Q, Leng J, Wang Y H, Sun Y N, Du H B, Zhang D D, Song L L, He L H and Liu F C 2022 Chin. Phys. Lett. 39 023301 [5] Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259 [6] Watanabe S, Kondo K, Nabekawa Y, Sagisaka A and Kobayashi Y 1994 Phys. Rev. Lett. 73 2692 [7] Peatross J and Meyerhofer D D 1995 Phys. Rev. A 52 3976 [8] Miyazaki K and Takada H 1995 Phys. Rev. A 52 3007 [9] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [10] Chang Z H and Corkum P B 2010 J. Opt. Soc. Am. B 27 B9 [11] Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou PH, Muller H G and Agostini P 2001 Science 292 1689 [12] Baltuska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hansch T W and Krausz F 2003 Nature 421 611 [13] Corkum P B 2013 Attosecond Physics (Springer Series in Optical Sciences) [14] Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Fleischer A, Bordo E, Fan T, Popmintchev D, Popmintchev T and others 2016 J. Phys. B: At. Mol. Opt. Phys. 49 123501 [15] Zhang X F, Li L, Zhu X S, Liu X, Zhang Q B, Lan P F and Lu P X 2016 Phys. Rev. A 94 053408 [16] Milošević D B 2016 Phys. Rev. A 93 051402 [17] Bandrauk A D, Mauger F and Yuan K J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 23LT01 [18] Reich D M and Madsen L B 2016 Phys. Rev. A 93 043411 [19] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201 [20] Niikura H, Villeneuve D M and Corkum P B 2005 Phys. Rev. Lett. 94 083003 [21] Shao H C and Starace A F 2010 Phys. Rev. Lett. 105 263201 [22] Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M and Corkum P B 2008 Science 320 1478 [23] Yuan K J, Chelkowski S and Bandrauk A D 2015 Chem. Phys. Lett. 638 173 [24] Zhang H D, Ben S, Xu T T, Song K L, Tian Y R, Xu Q Y, Zhang S Q, Guo J and Liu X S 2018 Phys. Rev. A 98 013422 [25] Li Y, Qin M Y, Zhu X S, Zhang Q B, Lan P F and Lu P X 2015 Opt. Express 23 10687 [26] Yuan K J, Lu H Z and Bandrauk A D 2011 Phys. Rev. A 83 043418 [27] Yuan K J and Bandrauk A D 2012 J. Phys. B: At. Mol. Opt. Phys. 45 105601 [28] Hatsui T, Nagasono M and Kosugi N 2004 J. Electron. Spectrosc. Relat. Phenom. 137 435 [29] Hollstein M and Rohringer N 2019 Phys. Rev. A 99 013425 [30] Chen Y and Zhang B 2012 Phys. Rev. A 86 023415 [31] Miao X Y and Du H N 2013 Phys. Rev. A 87 053403 [32] Xu Q Y, Yang Z J, He Y L, Gao F Y, Lu H Z and Guo J 2021 Opt. Express 29 32312 [33] Guan X, Secor E B, DuToit R C and Bartschat K 2012 Phys. Rev. A 86 053425 [34] Bian X B and Bandrauk A D 2011 Phys. Rev. A 83 023414 [35] Campos J A, Nascimento D L, Cavalcante D T, Fonseca A L and Numesa A O 2006 Int. J. Quantum Chem. 106 2587 [36] Yuan K J, Chelkowski S and Bandrauk A D 2014 Chem. Phys. Lett. 592 334 [37] Wind H 1965 J. Chem. Phys. 42 2371 [38] Bandrauk A D and Shen H 1993 J. Chem. Phys. 99 1185 [39] Bandrauk A D and Lu H 2013 J. Theor. Comput. Chem. 12 1340001 [40] Ben-Itzhak I, Gertner I, Heber O and Rosner B 1993 Phys. Rev. Lett. 71 1347 [41] Zuo T, Bandrauk A D and Corkum P B 1996 Chem. Phys. Lett. 259 313 [42] Odenweller M, Takemoto N, Vredenborg A, Cole K, Pahl K, Titze J, Schmidt L P, Jahnke T, Dorner R and Becker A 2011 Phys. Rev. Lett. 107 143004 [43] Akoury D, Kreidi K, Jahnke T, et al. 2007 Science 318 949 [44] Ansari Z, Böttcher M, Manschwetus B, et al. 2008 New J. Phys. 10 093027 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|