Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050702    DOI: 10.1088/1674-1056/acae73
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method

Min-Na Qiao(乔敏娜)1, Lu-Hua Liu(刘鲁华)1, Bo-Song Cai(蔡柏松)1, Ya-Ting Zhang(张雅婷)2,†, Qing-Lan Wang(王晴岚)3, Jia-Hao Xu(徐家豪)4,‡, and Qi Liu(刘祺)4
1 School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China;
2 School of Physics and Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
3 School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;
4 MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics&School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-sen University(Zhuhai Campus), Zhuhai 519082, China
Abstract  In TianQin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic properties. Here we present a single frequency modulation method based on a torsion pendulum to measure the remanent magnetic moment $m_{\rm r}$ of $1.1$ kg dummy copper test mass, and the measurement result is $(6.45\pm0.04(\rm{stat})\pm0.07(\rm{syst}))\times10^{-8} \rm{A\cdot m^2}$. The measurement precision of the $m_{\rm r}$ is about $0.9 \rm{nA\cdot m^2}$, well below the present measurement requirement of TianQin. The method is particularly useful for measuring extremely low magnetic properties of the materials for use in the construction of space-borne gravitational wave detection and other precision scientific apparatus.
Keywords:  remanent magnetic moment      torsion pendulum      single frequency modulation method  
Received:  30 November 2022      Revised:  01 January 2023      Accepted manuscript online:  08 February 2023
PACS:  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
  04.80.Nn (Gravitational wave detectors and experiments)  
Fund: This work is supported by the National Key R&D Program of China (Grant No. 2020YFC2200500) and the National Natural Science Foundation of China (Grant Nos. 12075325, 12005308, and 11605065).
Corresponding Authors:  Ya-Ting Zhang, Jia-Hao Xu     E-mail:  zhangyating@hbuas.edu.cn;jhx@cug.edu.cn

Cite this article: 

Min-Na Qiao(乔敏娜), Lu-Hua Liu(刘鲁华), Bo-Song Cai(蔡柏松), Ya-Ting Zhang(张雅婷),Qing-Lan Wang(王晴岚), Jia-Hao Xu(徐家豪), and Qi Liu(刘祺) Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method 2023 Chin. Phys. B 32 050702

[1] Luo J, Chen L S, Duan H Z, et al. 2016 Class. Quantum Grav. 33 035010
[2] Mei J, Bai Y Z, Bao J, et al. 2021 Progress of Theoretical and Experimental Physics 5 05A107
[3] Armano M, Audley H, Baird J, et al. 2020 Monthly Notices of the Royal Astronomical Society 494 3014
[4] Su W, Wang Y, Zhou Z B, et al. 2020 Class. Quantum Grav. 37 185017
[5] Quantum design 2022 Product description
[6] Yin H, Tan D Y, Hu M, et al. 2021 Phys. Rev. Appl. 15 014008
[7] Davis R S 1995 Journal of research of the National Institute of Standards and Technology 100 209
[8] Hueller M, Armano M, Carbone L, et al. 2005 Class. Quantum Grav. 22 S521
[9] Tu H B, Bai Y Z, Zhou Z B, Liang Y R, Luo J, et al. 2009 Chin. Phys. Lett. 26 040403
[10] Zhu L, Liu Q, Zhao H H, et al. 2018 Rev. Sci. Instrum. 89 044501
[11] Xu J H, Liu Q, Luo X, et al. 2021 Phys. Rev. Appl. 18 044010
[12] Fan X D, Liu Q, Liu L X, et al. 2008 Phys. Lett. A 372 547
[13] Luo J, Tian Y, Shao C G, et al. 2015 Chin. Phys. B 24 030401
[14] Luo J, Lei Y, Shao C, et al. 2020 Phys. Rev. D 101 042002
[15] Guo-Qiang F, Shan-Qing Y, Liang-Cheng T, et al. 2006 Chin. Phys. Lett. 23 2052
[16] Gundlach J H, Schlamminger S, Spitzer C D, et al. 2007 Phys. Rev. Lett. 98 150801
[17] Gundlach J H, Smith G L, Adelberger E G, et al. 1997 Phys. Rev. Lett. 78 2523
[18] Crosser M S, Scott S, Clark A, et al. 2010 Rev. Sci. Instrum. 81 084701
[19] Goldblum C E, Ritter R C and Gillies G T 1988 Rev. Sci. Instrum. 59 778
[20] Quinn B G 2016 IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 4298
[21] Patla B R 2016 Class. Quantum Grav. 33 045006
[22] Armano M, Audley H, Auger G, et al. 2015 J. Phys.: Conf. Ser. 610 012024
[23] Collinson D 2013 Methods in rock magentism and palaeomagnetism: techniques and instrumentation
[24] Parasnis D S 2012 Principles of applied geophysics
[25] Silvestri Z, Davis R S, Genevés G, et al. 2003 Metrologia 40 172
[26] Fiorillo F 2010 Metrologia 47 S114
[1] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
[2] Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise
Jie Luo(罗杰), Jun Ke(柯俊), Yi-Chuan Liu(柳一川), Xiang-Li Zhang(张祥莉), Wei-Ming Yin(殷蔚明), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2019, 28(10): 100401.
[3] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[4] Influence of the colored noise on determining the period of a torsion pendulum
Jie Luo(罗 杰), Wen-Ze Zhan(占文泽), Wei-Huang Wu(巫伟皇), Cheng-Gang Shao(邵成刚), Dian-Hong Wang(王典洪). Chin. Phys. B, 2016, 25(8): 080401.
No Suggested Reading articles found!