Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050702    DOI: 10.1088/1674-1056/acae73
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method

Min-Na Qiao(乔敏娜)1, Lu-Hua Liu(刘鲁华)1, Bo-Song Cai(蔡柏松)1, Ya-Ting Zhang(张雅婷)2,†, Qing-Lan Wang(王晴岚)3, Jia-Hao Xu(徐家豪)4,‡, and Qi Liu(刘祺)4
1 School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China;
2 School of Physics and Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
3 School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;
4 MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics&School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-sen University(Zhuhai Campus), Zhuhai 519082, China
Abstract  In TianQin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic properties. Here we present a single frequency modulation method based on a torsion pendulum to measure the remanent magnetic moment mr of 1.1 kg dummy copper test mass, and the measurement result is (6.45±0.04(stat)±0.07(syst))×108Am2. The measurement precision of the mr is about 0.9nAm2, well below the present measurement requirement of TianQin. The method is particularly useful for measuring extremely low magnetic properties of the materials for use in the construction of space-borne gravitational wave detection and other precision scientific apparatus.
Keywords:  remanent magnetic moment      torsion pendulum      single frequency modulation method  
Received:  30 November 2022      Revised:  01 January 2023      Accepted manuscript online:  08 February 2023
PACS:  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
  04.80.Nn (Gravitational wave detectors and experiments)  
Fund: This work is supported by the National Key R&D Program of China (Grant No. 2020YFC2200500) and the National Natural Science Foundation of China (Grant Nos. 12075325, 12005308, and 11605065).
Corresponding Authors:  Ya-Ting Zhang, Jia-Hao Xu     E-mail:  zhangyating@hbuas.edu.cn;jhx@cug.edu.cn

Cite this article: 

Min-Na Qiao(乔敏娜), Lu-Hua Liu(刘鲁华), Bo-Song Cai(蔡柏松), Ya-Ting Zhang(张雅婷),Qing-Lan Wang(王晴岚), Jia-Hao Xu(徐家豪), and Qi Liu(刘祺) Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method 2023 Chin. Phys. B 32 050702

[1] Luo J, Chen L S, Duan H Z, et al. 2016 Class. Quantum Grav. 33 035010
[2] Mei J, Bai Y Z, Bao J, et al. 2021 Progress of Theoretical and Experimental Physics 5 05A107
[3] Armano M, Audley H, Baird J, et al. 2020 Monthly Notices of the Royal Astronomical Society 494 3014
[4] Su W, Wang Y, Zhou Z B, et al. 2020 Class. Quantum Grav. 37 185017
[5] Quantum design 2022 Product description
[6] Yin H, Tan D Y, Hu M, et al. 2021 Phys. Rev. Appl. 15 014008
[7] Davis R S 1995 Journal of research of the National Institute of Standards and Technology 100 209
[8] Hueller M, Armano M, Carbone L, et al. 2005 Class. Quantum Grav. 22 S521
[9] Tu H B, Bai Y Z, Zhou Z B, Liang Y R, Luo J, et al. 2009 Chin. Phys. Lett. 26 040403
[10] Zhu L, Liu Q, Zhao H H, et al. 2018 Rev. Sci. Instrum. 89 044501
[11] Xu J H, Liu Q, Luo X, et al. 2021 Phys. Rev. Appl. 18 044010
[12] Fan X D, Liu Q, Liu L X, et al. 2008 Phys. Lett. A 372 547
[13] Luo J, Tian Y, Shao C G, et al. 2015 Chin. Phys. B 24 030401
[14] Luo J, Lei Y, Shao C, et al. 2020 Phys. Rev. D 101 042002
[15] Guo-Qiang F, Shan-Qing Y, Liang-Cheng T, et al. 2006 Chin. Phys. Lett. 23 2052
[16] Gundlach J H, Schlamminger S, Spitzer C D, et al. 2007 Phys. Rev. Lett. 98 150801
[17] Gundlach J H, Smith G L, Adelberger E G, et al. 1997 Phys. Rev. Lett. 78 2523
[18] Crosser M S, Scott S, Clark A, et al. 2010 Rev. Sci. Instrum. 81 084701
[19] Goldblum C E, Ritter R C and Gillies G T 1988 Rev. Sci. Instrum. 59 778
[20] Quinn B G 2016 IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 4298
[21] Patla B R 2016 Class. Quantum Grav. 33 045006
[22] Armano M, Audley H, Auger G, et al. 2015 J. Phys.: Conf. Ser. 610 012024
[23] Collinson D 2013 Methods in rock magentism and palaeomagnetism: techniques and instrumentation
[24] Parasnis D S 2012 Principles of applied geophysics
[25] Silvestri Z, Davis R S, Genevés G, et al. 2003 Metrologia 40 172
[26] Fiorillo F 2010 Metrologia 47 S114
[1] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
[2] Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise
Jie Luo(罗杰), Jun Ke(柯俊), Yi-Chuan Liu(柳一川), Xiang-Li Zhang(张祥莉), Wei-Ming Yin(殷蔚明), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2019, 28(10): 100401.
[3] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[4] Influence of the colored noise on determining the period of a torsion pendulum
Jie Luo(罗 杰), Wen-Ze Zhan(占文泽), Wei-Huang Wu(巫伟皇), Cheng-Gang Shao(邵成刚), Dian-Hong Wang(王典洪). Chin. Phys. B, 2016, 25(8): 080401.
No Suggested Reading articles found!