|
|
Liquid crystal droplets formation and stabilization during phase transition process |
Xia Meng(孟霞)1, Jiayao Ye(叶家耀)1, Ao Li(李澳)1, Xudong Zhu(朱徐栋)1, Zhaoyan Yang(杨朝雁)1, Lei Wang(王磊)1,2,†, Bingxiang Li(李炳祥)1,‡, and Yanqing Lu(陆延青)2 |
1 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China |
|
|
Abstract The study of phase transition processes in liquid crystals (LCs) remains challenging. Most thermotropic LCs exhibit a narrow temperature range and a rapid phase transition from the isotropic (ISO) to the nematic (N) phase, which make it difficult to capture and manipulate the phase transition process. In this study, we observed the evolution of small droplets during the ISO-N phase transition in ferroelectric nematic (N$_{\rm F}$) LC RM734. After doping with metal nanoparticles (NPs), the temperature range of the phase transition broadened, and the droplets formed during the phase transition remained stable, with their diameter increasing linearly with temperature. In addition, droplets doped with NPs can be well controlled by an external electric field. This discovery not only aids in understanding the fundamental mechanisms of LC phase transitions but also provides a simple alternative method for preparing droplets, which is potentially valuable for applications in optoelectronic devices and sensors.
|
Received: 15 July 2024
Revised: 18 August 2024
Accepted manuscript online: 14 September 2024
|
PACS:
|
61.30.-v
|
(Liquid crystals)
|
|
61.30.Pq
|
(Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)
|
|
64.70.M-
|
(Transitions in liquid crystals)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405000), the Natural Science Foundation of Jiangsu Province (Grant No. BK20211277), the Frontier Leading Technology Basic Research Project of Jiangsu Province (Grant No. BK20212004), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX23 0971), and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY223087). |
Corresponding Authors:
Lei Wang, Bingxiang Li
E-mail: wangl@njupt.edu.cn;bxli@njupt.edu.cn
|
Cite this article:
Xia Meng(孟霞), Jiayao Ye(叶家耀), Ao Li(李澳), Xudong Zhu(朱徐栋), Zhaoyan Yang(杨朝雁), Lei Wang(王磊), Bingxiang Li(李炳祥), and Yanqing Lu(陆延青) Liquid crystal droplets formation and stabilization during phase transition process 2024 Chin. Phys. B 33 116101
|
[1] Maune H, Jost M, Reese R, Polat E, Nickel M and Jakoby R 2018 Crystals 8 355 [2] Lu Y Q and Li Y 2021 Light Sci. Appl. 10 122 [3] Kokhanchik P, Sigurdsson H, Piętka B, Szczytko J and Lagoudakis P G 2021 Phys. Rev. B 13 L081406 [4] Mahamid J, Tegunov D, Maiser A, Arnold J, Leonhardt H and Plitzko J M 2019 Proc. Natl. Acad. Sci. USA 116 16866 [5] Singh S 2000 Phys. Rep. 324 107 [6] Golemme A, Zumer S, Allender D W and Doane J W 1998 Phys. Rev. Lett. 61 2937 [7] Prinsen P and Schoot P 2003 Phys. Rev. E 68 21701 [8] Prinsen P and Schoot P 2004 Eur. Phys. J. E 13 35 [9] Sparavigna A C 2016 Philica 1 1208576 [10] Nayani K, Fu J, Chang R, Park J O and Srinivasarao M 2017 Proc. Natl. Acad. Sci. USA 114 3826 [11] Wang P X and Maclachlan M J 2018 Philos. Trans. A 376 20170042 [12] Li J, Xia R, Xu H, Yang J, Zhang X and Kougo J 2021 J. Am. Chem. Soc. 143 17857 [13] Brouckaert N, Podoliak N, Orlova T, Bankova D, Fazio A F and Kanaras A G 2022 Nanomaterials 12 341 [14] Ben Amor I, Saadaoui L, Alharbi A N, Althagafi T M and Soltani T 2022 Chin. Phys. B 31 104202 [15] Xu Z, Liu N, Tang Z, Miao Y, Meng X, He Z, Li J, Cai M, Zhao T, Yang C, Xing H and Ye W 2021 Chin. Phys. B 30 096101 [16] Sureshchandra J G, Prabhu P, Singh A, Sreeram B, Dhulia V and Yadav B S 2009 Mol. Cryst. Liq. Cryst. 511 75 [17] Kikuchi H, Haseba Y, Yamamoto S I, Iwata T and Higuchi H 2009 SID Symp. Dig. Tech. Papers 40 578 [18] Melton C N, Riahinasab S T, Keshavarz A, Stokes B J and Hirst L S 2018 Nanomaterials 8 146 [19] Li J, Nishikawa H, Kougo J, Zhou J, Dai S and Tang W 2021 Sci. Adv. 7 5047 [20] Chen X, Korblova E, Dong D, Wei X, Shao R and Radzihovsky L 2020 Proc. Natl. Acad. Sci. USA 117 14021 [21] Ye F, Yang C, Zhang X, Huang X, Zhu Y and Aya S 2024 J. Mater. Chem. C 12 2738 [22] Máthé M T, Himel M S H, Adaka A, Gleeson J T, Sprunt S and Salamon P 2024 Adv. Funct. Mater. 34 2314158 [23] Yang J, Zou Y, Tang W, Li J, Huang M and Aya S 2022 Nat. Commun. 13 7806 [24] Sebastian N, Lovsin M, Berteloot B, Osterman N, Petelin A and Mandle R J 2023 Nat. Commun. 14 3029 [25] Mrukiewicz M, Perkowski P, Karcz J and Kula P 2023 Phys. Chem. Chem. Phys. 25 13061 [26] Lalik S, Stefanczyk O, Dardas D, Gorska N, Ohkoshi S I and Marzec M 2021 Materials 14 4722 [27] Draude A P, Kalavalapalli T Y, Iliut M, Mcconnell B and Dierking I 2020 Nanoscale Adv. 2 2404 [28] Bukowczan A, Hebda E and Pielichowski K 2021 J. Mol. Liq. 321 114849 [29] Erdmann J H, Žumer S and Doane J W 1990 Phys. Rev. Lett. 64 1907 [30] Ravnik M and Žumer S 2009 Liq. Cryst. 36 1201 [31] Mertelj A, Cmok L, Sebastián N, Mandle R J, Parker R R and Whit-wood A C 2018 Phys. Rev. X 8 041025 [32] Jiang J and Yang D K 2017 Liq. Cryst. 45 102 [33] Ignés-Mullol J, Mora M, Martínez-Prat B, Vélez-Cerón I, Herrera R and Sagues F 2020 Crystals 10 138 [34] Rahimi M, Roberts T F, Armas-Perez J C, Wang W, Bukusoglu E and Abbott N L 2015 Proc. Natl. Acad. Sci. USA 112 5297 [35] Yang C, Chen R, Feng L, Zhang R and Chen D 2022 Soft Matter. 2 1022077 [36] Xu F and Crooker P P 1997 Phys. Rev. E 56 6853 [37] Krakhalev M N, Prishchepa O O, Sutormin V S and Zyryanov V Y 2016 Liq. Cryst. 44 355 [38] Lin I H, Miller D S, Bertics P J, Murphy C J, De Pablo J J and Abbott N L 2011 Science 332 1297 [39] Prakash J, Khan S, Chauhan S and Biradar A M 2020 J. Mol. Liq. 297 112052 [40] Yang C J and Chen D 2022 Chin. J. Liq. Cryst. Disp. 37 1070 [41] Noh J, Liang H L, Drevenšek-Olenik I and Lagerwall J P F 2014 J. Mater. Chem. C 2 806 [42] Miller D S, Wang X and Abbott N L 2014 Chem. Mater. 26 496 [43] Lagerwall J P F and Scalia G 2012 Curr. Appl. Phys. 12 1387 [44] Yang C J, Wu B H, Ruan J, Zhao P, Chen L, Chen D and Ye F F 2021 Adv. Mater. 33 2006361 [45] Wang Y, Hu Q, Tian T and Yu L 2017 Sens. Actuators B 238 676 [46] Schwartz M, Lenzini G, Geng Y, Ronne P B, Ryan P Y A and Lagerwall J P F 2018 Adv. Mater. 30 1707382 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|