Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116101    DOI: 10.1088/1674-1056/ad7afd
RAPID COMMUNICATION Prev   Next  

Liquid crystal droplets formation and stabilization during phase transition process

Xia Meng(孟霞)1, Jiayao Ye(叶家耀)1, Ao Li(李澳)1, Xudong Zhu(朱徐栋)1, Zhaoyan Yang(杨朝雁)1, Lei Wang(王磊)1,2,†, Bingxiang Li(李炳祥)1,‡, and Yanqing Lu(陆延青)2
1 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Abstract  The study of phase transition processes in liquid crystals (LCs) remains challenging. Most thermotropic LCs exhibit a narrow temperature range and a rapid phase transition from the isotropic (ISO) to the nematic (N) phase, which make it difficult to capture and manipulate the phase transition process. In this study, we observed the evolution of small droplets during the ISO-N phase transition in ferroelectric nematic (N$_{\rm F}$) LC RM734. After doping with metal nanoparticles (NPs), the temperature range of the phase transition broadened, and the droplets formed during the phase transition remained stable, with their diameter increasing linearly with temperature. In addition, droplets doped with NPs can be well controlled by an external electric field. This discovery not only aids in understanding the fundamental mechanisms of LC phase transitions but also provides a simple alternative method for preparing droplets, which is potentially valuable for applications in optoelectronic devices and sensors.
Keywords:  liquid crystal      droplets      phase transition process      metal nanoparticles  
Received:  15 July 2024      Revised:  18 August 2024      Accepted manuscript online:  14 September 2024
PACS:  61.30.-v (Liquid crystals)  
  61.30.Pq (Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)  
  64.70.M- (Transitions in liquid crystals)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405000), the Natural Science Foundation of Jiangsu Province (Grant No. BK20211277), the Frontier Leading Technology Basic Research Project of Jiangsu Province (Grant No. BK20212004), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX23 0971), and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY223087).
Corresponding Authors:  Lei Wang, Bingxiang Li     E-mail:  wangl@njupt.edu.cn;bxli@njupt.edu.cn

Cite this article: 

Xia Meng(孟霞), Jiayao Ye(叶家耀), Ao Li(李澳), Xudong Zhu(朱徐栋), Zhaoyan Yang(杨朝雁), Lei Wang(王磊), Bingxiang Li(李炳祥), and Yanqing Lu(陆延青) Liquid crystal droplets formation and stabilization during phase transition process 2024 Chin. Phys. B 33 116101

[1] Maune H, Jost M, Reese R, Polat E, Nickel M and Jakoby R 2018 Crystals 8 355
[2] Lu Y Q and Li Y 2021 Light Sci. Appl. 10 122
[3] Kokhanchik P, Sigurdsson H, Piętka B, Szczytko J and Lagoudakis P G 2021 Phys. Rev. B 13 L081406
[4] Mahamid J, Tegunov D, Maiser A, Arnold J, Leonhardt H and Plitzko J M 2019 Proc. Natl. Acad. Sci. USA 116 16866
[5] Singh S 2000 Phys. Rep. 324 107
[6] Golemme A, Zumer S, Allender D W and Doane J W 1998 Phys. Rev. Lett. 61 2937
[7] Prinsen P and Schoot P 2003 Phys. Rev. E 68 21701
[8] Prinsen P and Schoot P 2004 Eur. Phys. J. E 13 35
[9] Sparavigna A C 2016 Philica 1 1208576
[10] Nayani K, Fu J, Chang R, Park J O and Srinivasarao M 2017 Proc. Natl. Acad. Sci. USA 114 3826
[11] Wang P X and Maclachlan M J 2018 Philos. Trans. A 376 20170042
[12] Li J, Xia R, Xu H, Yang J, Zhang X and Kougo J 2021 J. Am. Chem. Soc. 143 17857
[13] Brouckaert N, Podoliak N, Orlova T, Bankova D, Fazio A F and Kanaras A G 2022 Nanomaterials 12 341
[14] Ben Amor I, Saadaoui L, Alharbi A N, Althagafi T M and Soltani T 2022 Chin. Phys. B 31 104202
[15] Xu Z, Liu N, Tang Z, Miao Y, Meng X, He Z, Li J, Cai M, Zhao T, Yang C, Xing H and Ye W 2021 Chin. Phys. B 30 096101
[16] Sureshchandra J G, Prabhu P, Singh A, Sreeram B, Dhulia V and Yadav B S 2009 Mol. Cryst. Liq. Cryst. 511 75
[17] Kikuchi H, Haseba Y, Yamamoto S I, Iwata T and Higuchi H 2009 SID Symp. Dig. Tech. Papers 40 578
[18] Melton C N, Riahinasab S T, Keshavarz A, Stokes B J and Hirst L S 2018 Nanomaterials 8 146
[19] Li J, Nishikawa H, Kougo J, Zhou J, Dai S and Tang W 2021 Sci. Adv. 7 5047
[20] Chen X, Korblova E, Dong D, Wei X, Shao R and Radzihovsky L 2020 Proc. Natl. Acad. Sci. USA 117 14021
[21] Ye F, Yang C, Zhang X, Huang X, Zhu Y and Aya S 2024 J. Mater. Chem. C 12 2738
[22] Máthé M T, Himel M S H, Adaka A, Gleeson J T, Sprunt S and Salamon P 2024 Adv. Funct. Mater. 34 2314158
[23] Yang J, Zou Y, Tang W, Li J, Huang M and Aya S 2022 Nat. Commun. 13 7806
[24] Sebastian N, Lovsin M, Berteloot B, Osterman N, Petelin A and Mandle R J 2023 Nat. Commun. 14 3029
[25] Mrukiewicz M, Perkowski P, Karcz J and Kula P 2023 Phys. Chem. Chem. Phys. 25 13061
[26] Lalik S, Stefanczyk O, Dardas D, Gorska N, Ohkoshi S I and Marzec M 2021 Materials 14 4722
[27] Draude A P, Kalavalapalli T Y, Iliut M, Mcconnell B and Dierking I 2020 Nanoscale Adv. 2 2404
[28] Bukowczan A, Hebda E and Pielichowski K 2021 J. Mol. Liq. 321 114849
[29] Erdmann J H, Žumer S and Doane J W 1990 Phys. Rev. Lett. 64 1907
[30] Ravnik M and Žumer S 2009 Liq. Cryst. 36 1201
[31] Mertelj A, Cmok L, Sebastián N, Mandle R J, Parker R R and Whit-wood A C 2018 Phys. Rev. X 8 041025
[32] Jiang J and Yang D K 2017 Liq. Cryst. 45 102
[33] Ignés-Mullol J, Mora M, Martínez-Prat B, Vélez-Cerón I, Herrera R and Sagues F 2020 Crystals 10 138
[34] Rahimi M, Roberts T F, Armas-Perez J C, Wang W, Bukusoglu E and Abbott N L 2015 Proc. Natl. Acad. Sci. USA 112 5297
[35] Yang C, Chen R, Feng L, Zhang R and Chen D 2022 Soft Matter. 2 1022077
[36] Xu F and Crooker P P 1997 Phys. Rev. E 56 6853
[37] Krakhalev M N, Prishchepa O O, Sutormin V S and Zyryanov V Y 2016 Liq. Cryst. 44 355
[38] Lin I H, Miller D S, Bertics P J, Murphy C J, De Pablo J J and Abbott N L 2011 Science 332 1297
[39] Prakash J, Khan S, Chauhan S and Biradar A M 2020 J. Mol. Liq. 297 112052
[40] Yang C J and Chen D 2022 Chin. J. Liq. Cryst. Disp. 37 1070
[41] Noh J, Liang H L, Drevenšek-Olenik I and Lagerwall J P F 2014 J. Mater. Chem. C 2 806
[42] Miller D S, Wang X and Abbott N L 2014 Chem. Mater. 26 496
[43] Lagerwall J P F and Scalia G 2012 Curr. Appl. Phys. 12 1387
[44] Yang C J, Wu B H, Ruan J, Zhao P, Chen L, Chen D and Ye F F 2021 Adv. Mater. 33 2006361
[45] Wang Y, Hu Q, Tian T and Yu L 2017 Sens. Actuators B 238 676
[46] Schwartz M, Lenzini G, Geng Y, Ronne P B, Ryan P Y A and Lagerwall J P F 2018 Adv. Mater. 30 1707382
[1] Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases
Xing-Zhou Tang(汤星舟), Jia-Yao Ye(叶家耀), Zi-Ye Wang(王子烨), Hao-Yi Jiang(姜皓译), Xiao-Hu Shang(尚小虎), Zhao-Yan Yang(杨朝雁), and Bing-Xiang Li(李炳祥). Chin. Phys. B, 2024, 33(8): 087702.
[2] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[3] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[4] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[5] A minimal model for the auxetic response of liquid crystal elastomers
Bingyu Yu(於冰宇), Yuanchenxi Gao(高袁晨曦), Bin Zheng(郑斌), Fanlong Meng(孟凡龙), Yu Fang(方羽), Fangfu Ye(叶方富), and Zhongcan Ouyang(欧阳钟灿). Chin. Phys. B, 2022, 31(10): 104601.
[6] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[7] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[8] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[9] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[10] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[11] Irradiation study of liquid crystal variable retarder for Full-disk Magneto-Graph payload onboard ASO-S mission
Jun-Feng Hou(侯俊峰), Hai-Feng Wang(王海峰), Gang Wang(王刚), Yong-Quan Luo(骆永全), Hong-Wei Li(李宏伟), Zhen-Long Zhang(张振龙), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇). Chin. Phys. B, 2020, 29(7): 074208.
[12] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[13] Interference effect on the liquid-crystal-based Stokes polarimeter
Jun-Feng Hou(侯俊峰), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇), Zhi-Yong Zhang(张志勇), and Ying-Zi Sun(孙英姿). Chin. Phys. B, 2020, 29(12): 124211.
[14] Design of an augmented reality display based on polarization grating
Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽). Chin. Phys. B, 2019, 28(7): 074201.
[15] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
No Suggested Reading articles found!