CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Valley switch effect in an α-T3 lattice-based superconducting interferometer |
Ya-Jun Wei(魏亚军) and Jun Wang(汪军)† |
School of Physics, Southeast University, Nanjing 210096, China |
|
|
Abstract Dirac electrons possess a valley degree of freedom, which is currently under investigation as a potential information carrier. We propose an approach to generate and manipulate the valley-switching current (VSC) through Andreev reflection using an interferometer-based superconductor hybrid junction. The interferometer comprises a ring-shaped structure formed by topological kink states in the $\alpha$-T$_3$ lattice via carefully designed electrostatic potentials. Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron. Furthermore, we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter $\alpha$. The former alters the dynamic phase of electrons while the latter provides an $\alpha$-dependent Berry phase, both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC, crucial for advancements in valleytronics.
|
Received: 13 May 2024
Revised: 03 August 2024
Accepted manuscript online: 15 August 2024
|
PACS:
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
72.90.+y
|
(Other topics in electronic transport in condensed matter)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: The work was supported by the National Natural Science Foundation of China (Grant No. 12174051). |
Corresponding Authors:
Jun Wang
E-mail: jwang@seu.edu.cn
|
Cite this article:
Ya-Jun Wei(魏亚军) and Jun Wang(汪军) Valley switch effect in an α-T3 lattice-based superconducting interferometer 2024 Chin. Phys. B 33 117201
|
[1] Deutscher G 2005 Rev. Mod. Phys. 77 109 [2] Buzdin A I 2005 Rev. Mod. Phys. 77 935 [3] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337 [4] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007 [5] Linder J and Yokoyama T 2014 Phys. Rev. B 89 020504 [6] Wang J, Hao L and Chan K S 2015 Phys. Rev. B 91 085415 [7] Li H 2016 Phys. Rev. B 94 075428 [8] Zhang Q, Fu D, Wang B, zhang R and Xing D Y 2008 Phys. Rev. Lett. 101 047005 [9] Li W Y, Wu Q P, Liu Z Z, Liu F F and Xiao X B 2023 J. Appl. Phys. 133 143903 [10] Bai C, Yang Y and Zhang X 2008 Appl. Phys. Lett. 92 102513 [11] Beenakker C W J, Gnezdilov N V, Dresselhaus E, Ostroukh V P, Herasymenko Y, Adagideli I and Tworzydlo J 2018 Phys. Rev. B 97 241403 [12] Martin I, Blanter Y M and Morpurgo A F 2008 Phys. Rev. Lett. 100 036804 [13] Semenoff G W, Semenoff V and Zhou F 2008 Phys. Rev. Lett. 101 087204 [14] Ju L, Shi Z W, Nair N, Lv Y C, Jin C H, Jr J V, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650 [15] Yin L J, Jiang H, Qiao J B and He L 2016 Nat. Commun. 7 11760 [16] Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F and Liu Z 2017 Nat. Phys. 13 369 [17] Wu X X, Meng Y, Tian J X, Huang Y Z, Xiang H, Han D Z and Wen W J 2017 Nat. Commun. 8 1304 [18] Ye L P, Yang Y T, Hang Z H, Qiu C Y and Liu Z Y 2017 Appl. Phys. Lett. 111 251107 [19] Dong J W, Chen X D, Zhu H Y, Wang Y and Zhang X 2017 Nat. Mater. 16 298 [20] Noh J, Huang S, Chen K P and Rechtsman M C 2018 Phys. Rev. Lett. 120 063902 [21] Gao F, Xue H R, Yang Z j, Lai K, Yu Y, Lin X, Chong Y, Shvets G and Zhang B L 2018 Nat. Phys. 14 140 [22] Cheng S G, Liu H, Jiang H, Sun Q F and Xie X C 2018 Phys. Rev. Lett. 121 156801 [23] Urban D F, Bercioux D, Wimmer M and Hausler W 2011 Phys. Rev. B 84 115136 [24] Malcolm J D and Nicol E J 2015 Phys. Rev. B 92 035118 [25] Okamoto S and Xiao D 2018 J. Phys. Soc. Jpn. 87 041006 [26] Vidal J, Mosseri R and Doucot B 1998 Phys. Rev. Lett. 81 5888 [27] Raoux A, Morigi M, Fuchs J N, Piechon F and Montambaux G 2014 Phys. Rev. Lett. 112 026402 [28] Malcolm J D and Nicol E J 2015 Phys. Rev. B 92 035118 [29] Lu W T and Sun Q F 2021 Phys. Rev. B 104 045418 [30] Tan H, Fu P H, Chen Y R, Liu J F, Wang J and Ma Z 2021 Phys. Rev. B 103 195407 [31] Fisher D S and Lee P A 1981 Phys. Rev. B 23 6851 [32] Xu Y, Chen Y R, Wang J, Liu J F and Ma Z 2019 Phys. Rev. Lett. 123 206801 [33] Zhang Z Q, Chen C Z, Wu Y, Jiang H, Liu J, Sun Q F and Xie X C 2021 Phys. Rev. B 103 075434 [34] Ren Y N, Cheng Q, Sun Q F and He L 2022 Phys. Rev. Lett. 128 206805 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|