Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117201    DOI: 10.1088/1674-1056/ad6f91
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Valley switch effect in an α-T3 lattice-based superconducting interferometer

Ya-Jun Wei(魏亚军) and Jun Wang(汪军)†
School of Physics, Southeast University, Nanjing 210096, China
Abstract  Dirac electrons possess a valley degree of freedom, which is currently under investigation as a potential information carrier. We propose an approach to generate and manipulate the valley-switching current (VSC) through Andreev reflection using an interferometer-based superconductor hybrid junction. The interferometer comprises a ring-shaped structure formed by topological kink states in the $\alpha$-T$_3$ lattice via carefully designed electrostatic potentials. Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron. Furthermore, we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter $\alpha$. The former alters the dynamic phase of electrons while the latter provides an $\alpha$-dependent Berry phase, both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC, crucial for advancements in valleytronics.
Keywords:  valley switch effect      valleytronics      Andreev reflection      $\alpha$-T$_3$ lattice  
Received:  13 May 2024      Revised:  03 August 2024      Accepted manuscript online:  15 August 2024
PACS:  72.15.-v (Electronic conduction in metals and alloys)  
  72.90.+y (Other topics in electronic transport in condensed matter)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: The work was supported by the National Natural Science Foundation of China (Grant No. 12174051).
Corresponding Authors:  Jun Wang     E-mail:  jwang@seu.edu.cn

Cite this article: 

Ya-Jun Wei(魏亚军) and Jun Wang(汪军) Valley switch effect in an α-T3 lattice-based superconducting interferometer 2024 Chin. Phys. B 33 117201

[1] Deutscher G 2005 Rev. Mod. Phys. 77 109
[2] Buzdin A I 2005 Rev. Mod. Phys. 77 935
[3] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[4] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[5] Linder J and Yokoyama T 2014 Phys. Rev. B 89 020504
[6] Wang J, Hao L and Chan K S 2015 Phys. Rev. B 91 085415
[7] Li H 2016 Phys. Rev. B 94 075428
[8] Zhang Q, Fu D, Wang B, zhang R and Xing D Y 2008 Phys. Rev. Lett. 101 047005
[9] Li W Y, Wu Q P, Liu Z Z, Liu F F and Xiao X B 2023 J. Appl. Phys. 133 143903
[10] Bai C, Yang Y and Zhang X 2008 Appl. Phys. Lett. 92 102513
[11] Beenakker C W J, Gnezdilov N V, Dresselhaus E, Ostroukh V P, Herasymenko Y, Adagideli I and Tworzydlo J 2018 Phys. Rev. B 97 241403
[12] Martin I, Blanter Y M and Morpurgo A F 2008 Phys. Rev. Lett. 100 036804
[13] Semenoff G W, Semenoff V and Zhou F 2008 Phys. Rev. Lett. 101 087204
[14] Ju L, Shi Z W, Nair N, Lv Y C, Jin C H, Jr J V, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650
[15] Yin L J, Jiang H, Qiao J B and He L 2016 Nat. Commun. 7 11760
[16] Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F and Liu Z 2017 Nat. Phys. 13 369
[17] Wu X X, Meng Y, Tian J X, Huang Y Z, Xiang H, Han D Z and Wen W J 2017 Nat. Commun. 8 1304
[18] Ye L P, Yang Y T, Hang Z H, Qiu C Y and Liu Z Y 2017 Appl. Phys. Lett. 111 251107
[19] Dong J W, Chen X D, Zhu H Y, Wang Y and Zhang X 2017 Nat. Mater. 16 298
[20] Noh J, Huang S, Chen K P and Rechtsman M C 2018 Phys. Rev. Lett. 120 063902
[21] Gao F, Xue H R, Yang Z j, Lai K, Yu Y, Lin X, Chong Y, Shvets G and Zhang B L 2018 Nat. Phys. 14 140
[22] Cheng S G, Liu H, Jiang H, Sun Q F and Xie X C 2018 Phys. Rev. Lett. 121 156801
[23] Urban D F, Bercioux D, Wimmer M and Hausler W 2011 Phys. Rev. B 84 115136
[24] Malcolm J D and Nicol E J 2015 Phys. Rev. B 92 035118
[25] Okamoto S and Xiao D 2018 J. Phys. Soc. Jpn. 87 041006
[26] Vidal J, Mosseri R and Doucot B 1998 Phys. Rev. Lett. 81 5888
[27] Raoux A, Morigi M, Fuchs J N, Piechon F and Montambaux G 2014 Phys. Rev. Lett. 112 026402
[28] Malcolm J D and Nicol E J 2015 Phys. Rev. B 92 035118
[29] Lu W T and Sun Q F 2021 Phys. Rev. B 104 045418
[30] Tan H, Fu P H, Chen Y R, Liu J F, Wang J and Ma Z 2021 Phys. Rev. B 103 195407
[31] Fisher D S and Lee P A 1981 Phys. Rev. B 23 6851
[32] Xu Y, Chen Y R, Wang J, Liu J F and Ma Z 2019 Phys. Rev. Lett. 123 206801
[33] Zhang Z Q, Chen C Z, Wu Y, Jiang H, Liu J, Sun Q F and Xie X C 2021 Phys. Rev. B 103 075434
[34] Ren Y N, Cheng Q, Sun Q F and He L 2022 Phys. Rev. Lett. 128 206805
[1] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[2] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[3] Valley filtering and valley-polarized collective modes in bulk graphene monolayers
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰). Chin. Phys. B, 2024, 33(1): 017203.
[4] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[5] Moiré Dirac fermions in transition metal dichalcogenides heterobilayers
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军). Chin. Phys. B, 2023, 32(10): 107307.
[6] Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction
Wei-Tao Lu(卢伟涛), Yue Mao(毛岳), and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2023, 32(10): 107403.
[7] Band engineering of valleytronics WSe2–MoS2 heterostructures via stacking form, magnetic moment and thickness
Yanwei Wu(吴彦玮), Zongyuan Zhang(张宗源), Liang Ma(马亮), Tao Liu(刘涛), Ning Hao(郝宁), Wengang Lü(吕文刚), Mingsheng Long(龙明生), and Lei Shan(单磊). Chin. Phys. B, 2023, 32(10): 107506.
[8] Spin transport properties in ferromagnet/superconductor junctions on topological insulator
Hong Li(李红) and Xin-Jian Yang(杨新建). Chin. Phys. B, 2022, 31(12): 127301.
[9] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[10] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[11] Distinction between critical current effects and intrinsic anomalies in the point-contact Andreev reflection spectra of unconventional superconductors
Ge He(何格), Zhong-Xu Wei(魏忠旭), Jérémy Brisbois, Yan-Li Jia(贾艳丽), Yu-Long Huang(黄裕龙), Hua-Xue Zhou(周花雪), Shun-Li Ni(倪顺利), Alejandro V Silhanek, Lei Shan(单磊), Bei-Yi Zhu(朱北沂), Jie Yuan(袁洁), Xiao-Li Dong(董晓莉), Fang Zhou(周放), Zhong-Xian Zhao(赵忠贤), Kui Jin(金魁). Chin. Phys. B, 2018, 27(4): 047403.
[12] The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure
Fenghua Qi(戚凤华), Jun Cao(曹军), Jie Cao(曹杰), Lifa Zhang(张力发). Chin. Phys. B, 2018, 27(12): 127401.
[13] Enhancement of subgap conductance in a graphene superconductor junction by valley polarization
Chuan-Xin Li(李传新), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2017, 26(2): 027304.
[14] Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states
Zhao-Tan Jiang(江兆潭), Cheng-Cheng Zhong(仲成成). Chin. Phys. B, 2016, 25(6): 067302.
[15] Resonant Andreev reflection in a normal-metal/quantum-dot/superconductor system with coupled Majorana bound states
Su-Xin Wang(王素新), Yu-Xian Li(李玉现), Jian-Jun Liu(刘建军). Chin. Phys. B, 2016, 25(3): 037304.
No Suggested Reading articles found!