Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037304    DOI: 10.1088/1674-1056/25/3/037304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Resonant Andreev reflection in a normal-metal/quantum-dot/superconductor system with coupled Majorana bound states

Su-Xin Wang(王素新)1,2, Yu-Xian Li(李玉现)1, Jian-Jun Liu(刘建军)1,3
1. College of Physical Science and Information Engineering and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China;
2. Department of Physics, Hebei Normal University for Nationalities, Chengde 067000, China;
3. Physics Department, Shijiazhuang University, Shijiazhuang 050035, China
Abstract  

Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N-QD-S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD-MBS coupling or MBS-MBS coupling. The AR conductance is always e2/2h at the zero Fermi energy point when only QD-MBSs coupling is considered. In addition, the resonant AR occurs when the MBS-MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD-MBS coupling and the MBS-MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.

Keywords:  Majorana bound states      Andreev reflection      Fano effect      quantum dot  
Received:  09 October 2015      Revised:  03 December 2015      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61176089 and 10974043), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011205092 and 2014205005), and the Fund for Hebei Normal University for Nationalities, China (Grant No. 201109).

Corresponding Authors:  Jian-Jun Liu     E-mail:  liujj@mail.hebtu.edu.cn

Cite this article: 

Su-Xin Wang(王素新), Yu-Xian Li(李玉现), Jian-Jun Liu(刘建军) Resonant Andreev reflection in a normal-metal/quantum-dot/superconductor system with coupled Majorana bound states 2016 Chin. Phys. B 25 037304

[1] Majorana E 1937 Nuovo Cimento 14 171
[2] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
[3] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[4] Leijnse M and Flensberg K 2011 Phys. Rev. Lett. 107 210502
[5] Zhang D P amd Tian G S 2015 Chin. Phys. B 24 080401
[6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[7] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[8] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[9] Chen W, Xue Z Y, Wang Z D and Shen R 2014 Chin. Phys. B 23 030309
[10] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[11] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[12] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[13] Flensberg K 2011 Phys. Rev. Lett. 106 090503
[14] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308
[15] Li Y X and Bai Z M 2013 J. Appl. Phys. 114 033703
[16] Wang N, Lv S H and Li Y X 2014 J. Appl. Phys. 115 083706
[17] Deng M X, Zheng S H, Yang M, Hu L B and Wang R Q 2015 Chin. Phys. B 24 037302
[18] Lü H F, Lu H Z and Shen S Q 2014 Phys. Rev. B 90 195404
[19] Gong W J, Zhang S F, Li Z C, Yi G Y and Zheng Y S 2014 Phys. Rev. B 89 245413
[20] Lü H F, Guo Z, Ke S S, Guo Y and Zhang H W 2015 J. Appl. Phys. 117 164312
[21] Leijinse M and Flensberg K 2011 Phys. Rev. B 84 140501
[22] Shang E M, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
[23] Chen Wei, Xue Z Y, Wang Z D and Shen R 2014 Chin. Phys. B 23 030309
[24] Zhou Y and Guo J H 2015 Acta Phys. Sin. 64 167302 (in Chinese)
[25] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
[26] Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802
[27] Fazio R and Raimondi R 1998 Phys. Rev. Lett. 80 2913
[28] Sun Q F, Wang J and Lin T H 1999 Phys. Rev. B 59 3831
[29] Sun Q F, Wang J and Lin T H 2001 Phys. Rev. Lett. 87 176601
[30] Barański J and Domański T 2015 Chin. Phys. B 24 017304
[31] Li Y X 2008 Chin. Phys. Lett. 25 3739
[32] Fano U 1961 Phys. Rev. 124 1866
[33] Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
[34] Cuevas J C, Martín-Rodero A and Levy Yeyati A 1996 Phys. Rev. B 54 7366
[35] Haug H and Jauho A P 1998 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer-Verlag)
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Spin transport properties in ferromagnet/superconductor junctions on topological insulator
Hong Li(李红) and Xin-Jian Yang(杨新建). Chin. Phys. B, 2022, 31(12): 127301.
No Suggested Reading articles found!