CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Distinction between critical current effects and intrinsic anomalies in the point-contact Andreev reflection spectra of unconventional superconductors |
Ge He(何格)1,2, Zhong-Xu Wei(魏忠旭)1,2, Jérémy Brisbois3, Yan-Li Jia(贾艳丽)1,2, Yu-Long Huang(黄裕龙)1,2, Hua-Xue Zhou(周花雪)1,2, Shun-Li Ni(倪顺利)1,2, Alejandro V Silhanek3, Lei Shan(单磊)1,2,4, Bei-Yi Zhu(朱北沂)1, Jie Yuan(袁洁)1, Xiao-Li Dong(董晓莉)1,2,4, Fang Zhou(周放)1,2,4, Zhong-Xian Zhao(赵忠贤)1,2,4, Kui Jin(金魁)1,2,4 |
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, Université de Liège, B-4000 Sart Tilman, Belgium;
4. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China |
|
|
Abstract In this work, we discuss the origin of several anomalies present in the point-contact Andreev reflection spectra of (Li1-xFex)OHFeSe, LiTi2O4, and La2-xCexCuO4. While these features are similar to those stemming from intrinsic superconducting properties, such as Andreev reflection, electron-boson coupling, multigap superconductivity, d-wave and p-wave pairing symmetry, they cannot be accounted for by the modified Blonder-Tinkham-Klapwijk (BTK) model, but require to consider critical current effects arising from the junction geometry. Our results point to the importance of tracking the evolution of the dips and peaks in the differential conductance as a function of the bias voltage, in order to correctly deduce the properties of the superconducting state.
|
Received: 11 December 2017
Revised: 05 February 2018
Accepted manuscript online:
|
PACS:
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
73.23.Ad
|
(Ballistic transport)
|
|
73.40.Gk
|
(Tunneling)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2015CB921000, 2016YFA0300301, and 2017YFA0302902), the National Natural Science Foundation of China (Grant Nos. 11674374 and 1474338), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH008), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07020100 and XDB07030200), the Beijing Municipal Science and Technology Project (Grant No. Z161100002116011), the Fonds de la Recherche Scientifique-FNRS and the ARC Grant 13/18-08 for Concerted Research Actions, financed by the French Community of Belgium (Wallonia-Brussels Federation). Jérémy Brisbois acknowledges the support from F.R.S.-FNRS (Research Fellowship), The work of Alejandro V Silhanek is partially supported by PDR T.0106.16 of the F.R.S.-FNRS. |
Corresponding Authors:
Ge He
E-mail: gehe@iphy.ac.cn
|
Cite this article:
Ge He(何格), Zhong-Xu Wei(魏忠旭), Jérémy Brisbois, Yan-Li Jia(贾艳丽), Yu-Long Huang(黄裕龙), Hua-Xue Zhou(周花雪), Shun-Li Ni(倪顺利), Alejandro V Silhanek, Lei Shan(单磊), Bei-Yi Zhu(朱北沂), Jie Yuan(袁洁), Xiao-Li Dong(董晓莉), Fang Zhou(周放), Zhong-Xian Zhao(赵忠贤), Kui Jin(金魁) Distinction between critical current effects and intrinsic anomalies in the point-contact Andreev reflection spectra of unconventional superconductors 2018 Chin. Phys. B 27 047403
|
[1] |
Deutscher G 2005 Rev. Mod. Phys. 77 109
|
[2] |
Andreev A F 1964 Sov. Phys. JETP 19 1228
|
[3] |
Daghero D, Tortello M, Ummarino G A and Gonnelli R S 2011 Rep. Prog. Phys. 74 124509
|
[4] |
Ding H, Yokoya T, Campuzano J C, Takahashi T, Randeria M, Norman M R, Mochiku T, Kadowaki K and Giapintzakis J 1996 Nature 382 51
|
[5] |
Tsuei C C and Kirtley J R 2000 Phys. Rev. Lett. 85 182
|
[6] |
Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z and Smith J L 1984 Phys. Rev. Lett. 52 1915
|
[7] |
Paglione J and Greene R L 2010 Nature Phys. 6 645
|
[8] |
Daghero D and Gonnelli R S 2010 Supercond. Sci. Tech. 23 043001
|
[9] |
VanHarlingen D 1995 Rev. Mod. Phys. 67 515
|
[10] |
Chesca B, Ehrhardt K, Möβle M, Straub R, Koelle D, Kleiner R and Tsukada A 2003 Phys. Rev. Lett. 90 057004
|
[11] |
Sharoni A, Koren G and Millo O 2001 Euro. Lett. 54 675
|
[12] |
Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001
|
[13] |
Takami S, Yada K, Yamakage A, Sato M and Tanaka Y 2014 J. Phys. Soc. Jpn. 83 064705
|
[14] |
Gonnelli R S, Daghero D, Ummarino G A, Stepanov V A, Jun J, Kazakov S M and Karpinski J 2002 Phys. Rev. Lett. 89 247004
|
[15] |
Hol'anová Z, Szabó P, Samuely P, Wilke R H T, Bud'ko S L and Canfield P C 2004 Phys. Rev. B 70 064520
|
[16] |
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
|
[17] |
Du Z Y, Yang X, Lin H, Fang D L, Du G, Xing J, Yang H, Zhu X Y and Wen H H 2016 Nature Communi. 7 10565
|
[18] |
Gonnelli R S, Tortello M, Daghero D, Ummarino G A, Stepanov V A and Kim J S 2009 Cent. Eur. J. Phys. 7 251-256
|
[19] |
Gonnelli R S, Daghero D, Tortello M, Ummarino G A, Stepanov V A, Kim J S and Kremer R K 2009 Phys. Rev. B 79 184526
|
[20] |
Shan L, Tao H J, Gao H, Li Z Z, Ren Z A, Che G C and Wen H H 2003 Phys. Rev. B 68 144510
|
[21] |
Sheet G, Mukhopadhyay S and Raychaudhuri P 2004 Phys. Rev. B 69 134507
|
[22] |
Blonder G, Tinkham M and Klapwijk T 1982 Phys. Rev. B 25 4515
|
[23] |
Blonder G and Tinkham M 1983 Phys. Rev. B 27 112
|
[24] |
Sharvin Y V 1965 Sov. Phys. JETP 21 655
|
[25] |
Baranger H U, MacDonald A H and Leavens C R 1985 Phys. Rev. B 31 6197
|
[26] |
Duif A M, Jansen A G M and Wyder P 1989 J. Phys. Cond. Matt. 1 3157-3189
|
[27] |
Wexler G 1996 Proc. Phys. Soc. London 89 927
|
[28] |
Lee P A 1971 J. Appl. Phys. 42 325
|
[29] |
Mao Z Q, Rosario M M, Nelson K D, Wu K, Deac I G, Schiffer P, Liu Y, He T, Regan K A and Cava R J 2003 Phys. Rev. B 67 094502
|
[30] |
Strijkers G J, Ji Y, Yang F Y, Chien C L and Byers J M 2001 Phys. Rev. B 63 104510
|
[31] |
Jin K, Butch N P, Kirshenbaum K, Paglione J and Greene R L 2011 Nature 476 73
|
[32] |
Jia Y L, He G and Hu W and Yang H and Yang Z Z and Yu H S and Zhang Q H and Shi J A and Lin Z F and Yuan J and Zhu B Y and Gu L and Li H and Jin K 2017 arXiv:1706.07618
|
[33] |
Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P and Hu W 2015 Phys. Rev. B 92 064515
|
[34] |
Huang Y L, Feng Z P, Ni S L, Li J, Hu W, Liu S B, Mao Y Y, Zhou H X, Zhou F, Jin K, Wang H B, Yuan J, Dong X L and Zhao Z X 2017 Chin. Phys. Lett. 34 077404
|
[35] |
Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Onose Y, Taguchi Y and Tokura Y 2002 Phys. Rev. Lett. 88 257001
|
[36] |
Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z and Zhou X J 2016 Nat. Commun. 7 10608
|
[37] |
Putzke C, Coldea A I, Guillamón I, Vignolles D, McCollam A, Leboeuf D, Watson M D, Mazin I I, Kasahara S, Terashima T, Shibauchi T, Matsuda Y and Carrington A 2012 Phys. Rev. Lett. 108 047002
|
[38] |
Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Böhmer A E, Hardy F, Wolf T, Meingast C, Löhneysen H V, Ikeda H and Ishizaka K 2014 Phys. Rev. B 90 121111
|
[39] |
Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X 2015 Phys. Rev. B 92 064515
|
[40] |
Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nature Mater. 15 38
|
[41] |
Wang H, Wang H C, Chen Y Q, Luo J W, Yuan Z J, Liu J, Wang Y, Jia S, Liu X J, Wei J and Wang J 2017 Sci. Bull. 62 425
|
[42] |
Satpathy S and Martin R 1987 Phys. Rev. B 36 7269
|
[43] |
Massidda S, Yu J and Freeman A 1988 Phys. Rev. B 38 11352
|
[44] |
Jin K, He G, Zhang X, Maruyama S, Yasui S, Suchoski R, Shin J, Jiang Y, Yu H S, Yuan J, Shan L, Kusmartsev F V, Greene R L and Takeuchi I 2015 Nature Communi. 6 7183
|
[45] |
Sun C, Lin J Y, Mollah S, Ho P, Yang H, Hsu F, Liao Y and Wu M 2004 Phys. Rev. B 70 054519
|
[46] |
Shan L, Gong J, Wang Y L, Shen B, Hou X Y, Ren C, Li C H, Yang H, Wen H H, Li S L and Dai P C 2012 Phys. Rev. Lett. 108 227002
|
[47] |
Chi S, Grothe S, Liang R, Dosanjh P, Hardy W N, Burke S A, Bonn D A and Pennec Y 2012 Phys. Rev. Lett. 109 087002
|
[48] |
Niestemski F C, Kunwar S, Zhou S, Li S, Ding H, Wang Z, Dai P and Madhavan V 2007 Nature 450 7172
|
[49] |
He G, Jia Y L, Hou X Y, Wei Z X, Xie H D, Yang Z Z, Shi J A, Yuan J, Shan L, Zhu B Y, Li H, Gu L, Liu K, Xiang T and Jin K 2017 Phys. Rev. B 95 054510
|
[50] |
Blumberg G, Koitzsch A, Gozar A, Dennis B, Kendziora C, Fournier P and Greene R 2002 Phys. Rev. Lett. 88 107002
|
[51] |
Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|