Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117301    DOI: 10.1088/1674-1056/ad7670
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nonvolatile ferroelectric control of electronic properties of Bi2Te3

Xusheng Ding(丁旭升), Yunfei Li(李云飞), Chaoyang Kang(康朝阳), Ye-Heng Song(宋业恒)†, and Weifeng Zhang(张伟风)‡
Henan Key Laboratory of Quantum Materials and Quantum Energy, Center for Topological Functional Materials, School of Future Technology, Henan University, Kaifeng 475004, China
Abstract  Nonvolatile electric-field control of the unique physical characteristics of topological insulators (TIs) is essential for the fundamental research and development of practical electronic devices. Electrically tunable transport properties through gating materials have been extensively investigated. However, the relatively weak and volatile tunability limits its practical applications in spintronics. Here, we demonstrate the nonvolatile electric-field control of Bi$_{2}$Te$_{3}$ transport properties via constructing ferroelectric Rashba architectures, i.e., 2D Bi$_{2}$Te$_{3}/\alpha $-In$_{2}$Se$_{3}$ ferroelectric field-effect transistors. By switching the polarization states of $\alpha $-In$_{2}$Se$_{3}$, the Fermi level, resistance, Fermi wave vector, carrier mobility, carrier density and magnetoresistance (MR) of the Bi$_{2}$Te$_{3}$ film can be effectively modulated. Importantly, a shift of the Fermi level towards a band gap with a surface state occurs as switching to a negative polarization state, the contribution of the surface state to the conductivity then increases, thereby increasing the carrier mobility and electron coherence length significantly, resulting in the enhanced weak anti-localization (WAL) effect. These results provide a nonvolatile electric-field control method to tune the electronic properties of TI and can further extend to quantum transport properties.
Keywords:  topological insulator      weak anti-localization effect      $\alpha $-In$_{2}$Se$_{3}$      electrical transport characteristics  
Received:  08 May 2024      Revised:  31 August 2024      Accepted manuscript online:  03 September 2024
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004099 and 11974099), the Zhongyuan Leading Talents, Plan for Leading Talent of Fundamental Research of the Central China in 2020, and the Intelligence Introduction Plan of Henan Province in 2021 (Grant No. CXJD2021008).
Corresponding Authors:  Ye-Heng Song, Weifeng Zhang     E-mail:  yehengsong@henu.edu.cn;wfzhang@henu.edu.cn

Cite this article: 

Xusheng Ding(丁旭升), Yunfei Li(李云飞), Chaoyang Kang(康朝阳), Ye-Heng Song(宋业恒), and Weifeng Zhang(张伟风) Nonvolatile ferroelectric control of electronic properties of Bi2Te3 2024 Chin. Phys. B 33 117301

[1] Moore J E 2010 Nature 464 7286
[2] Qi X L and Zhang S C 2010 Phys. Today 63 33
[3] Ngabonziza P, Stehno M P, Myoren H, Neumann V A, Koster G and Brinkman A 2016 Adv. Electron. Mater. 2 1600157
[4] He L, Xiu F, Wang Y, Fedorov A V, Huang G, Kou X, Lang M, Beyermann W P, Zou J and Wang K L 2011 J. Appl. Phys. 109 103702
[5] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 7510
[6] Li C H, van ’t Erve O M, Li Y Y, Li L and Jonker B T 2016 Sci. Rep. 6 29533
[7] Zhang H B, Yu H L, Bao D H, Li S W, Wang C X and Yang G W 2012 Phys. Rev. B 86 075102
[8] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
[9] Liu Y, Li Y Y, Rajput S, Gilks D, Lari L, Galindo P L, Weinert M, Lazarov V K and Li L 2014 Nat. Phys. 10 294
[10] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602
[11] Liu H and Ye P D 2011 Appl. Phys. Lett. 99 084104
[12] Kong D, Dang W, Cha J J, Li H, Meister S, Peng H, Liu Z and Cui Y 2010 Nano Lett. 10 2245
[13] Steinberg H, Laloë J B, Fatemi V, Moodera J S and Jarillo-Herrero P P 2011 Phys. Rev. B 84 23
[14] Zhang G, Qin H, Chen J, He X, Lu L, Li Y and Wu K 2011 Adv. Funct. Mater. 21 2351
[15] Yan J M, Xu Z X, Chen T W, Xu M, Zhang C, Zhao X W, Liu F, Guo L, Yan S Y, Gao G Y, Wang F F, Zhang J X, Dong S N, Li X G, Luo H S, Zhao W and Zheng R K 2019 ACS Appl. Mater. Inter. 11 9548
[16] Zhu Q X, Yang M M, Zheng M, Zheng R K, Guo L J, Wang Y, Zhang J X, Li X M, Luo H S and Li X G 2015 Adv. Funct. Mater. 25 1111
[17] Yan M Y, Yan J M, Zhang M Y, Chen T W, Gao G Y, Wang F F, Chai Y and Zheng R K 2020 Appl. Phys. Lett. 117 23
[18] Xue F, Hu W, Lee K C, Lu L S, Zhang J, Tang H L, Han A, Hsu W T, Tu S, Chang W H, Lien C H, He J H, Zhang Z, Li L J and Zhang X 2018 Adv. Funct. Mater. 28 1803738
[19] Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K and Ye P D 2019 Nat. Electron. 2 580
[20] Li Y, Chen C, Li W, Mao X, Liu H, Xiang J, Nie A, Liu Z, Zhu W and Zeng H 2020 Adv. Electron. Mater 6 2000061
[21] Si M, Zhang Z, Chang S C, Haratipour N, Zheng D, Li J, Avci U E and Ye P D 2021 ACS Nano 15 5689
[22] Wang K, Liu Y, Wang W, Meyer N, Bao L H and He L 2013 Appl. Phys. Lett. 103 031605
[23] Wan S, Li Y, Li W, Mao X, Zhu W and Zeng H 2018 Nanoscale 10 14885
[24] Lu H Z and Shen S Q 2014 Phys. Rev. Lett. 112 146601
[25] Brahlek M, Koirala N, Bansal N and Oh S 2015 Solid State Commun. 215 54
[26] Yan M Y, Li S S, Yan J M, Xie L, Xu M, Guo L and Zhang S J 2022 Phys. Rev. Appl. 18 044073
[27] Hikami S, Larkin A I and Nagaoka Y 1980 Progress of Theoretical Physics 63 707
[28] Malick S, Sarkar A B, Laha A, Anas M, Malik V K, Agarwal A, Hossain Z and Nayak J 2022 Phys. Rev. B 106 075105
[29] Laha A, Malick S, Singha R, Mandal P and Hossain Z 2019 Phys. Rev. B 99 241102
[30] Zhang J, Hou Z, Zhang C, Chen J and Zhang X 2019 Appl. Phys. Lett. 115 172407
[31] Malick S, Ghosh A, Barman C K, Alam A and Nayak J 2022 Phys. Rev. B 105 165105
[32] Chen Z, Yuan H, Zhang Y, Nomura K, Gao T, Gao Y, Shimotani H, Liu Z and Iwasa Y 2012 Nano Lett. 12 2212
[33] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2014 Nat. Mater. 14 280
[34] Shrestha K, Chou M, Graf D, Yang H D, Lorenz B and Chu C W 2017 Phys. Rev. B 95 195113
[1] Different topological phase transitions in the Su-Schrieffer-Heeger model under different disorder structures
Yan Gu(古燕) and Zhanpeng Lu(陆展鹏). Chin. Phys. B, 2024, 33(9): 090202.
[2] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[3] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[4] Higher-order topological Anderson insulator on the Sierpiński lattice
Huan Chen(陈焕), Zheng-Rong Liu(刘峥嵘), Rui Chen(陈锐), and Bin Zhou(周斌). Chin. Phys. B, 2024, 33(1): 017202.
[5] Optical study of magnetic topological insulator MnBi4Te7
Zhi-Yu Liao(廖知裕), Bing Shen(沈冰), Xiang-Gang Qiu(邱祥冈), and Bing Xu(许兵). Chin. Phys. B, 2024, 33(1): 017802.
[6] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[7] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[8] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[9] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[10] Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films
Zhiting Gao(高志廷), Minghua Guo(郭明华), Zichen Lian(连梓臣), Yaoxin Li(李耀鑫), Yunhe Bai(白云鹤), Xiao Feng(冯硝), Ke He(何珂), Yayu Wang(王亚愚), Chang Liu(刘畅), and Jinsong Zhang(张金松). Chin. Phys. B, 2023, 32(11): 117303.
[11] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[12] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[13] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[14] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[15] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
No Suggested Reading articles found!