Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction |
Wei-Tao Lu(卢伟涛)1,†, Yue Mao(毛岳)2, and Qing-Feng Sun(孙庆丰)2,3,‡ |
1 School of Sciences, Nantong University, Nantong 226019, China; 2 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 3 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract The Ising spin-orbit coupling could give rise to the spin-triplet Cooper pairs and equal-spin Andreev reflection (AR) in Ising superconductors. Here we theoretically study the valley-dependent equal-spin AR in a ferromagnet/Ising superconductor junction with a circularly polarized light applied to the ferromagnet. Because of the spin-triplet Cooper pairs and the optical irradiation, eight kinds of AR processes appear in the junction, including equal-spin AR and normal AR, the strengths and properties of which strongly depend on the valley degree of freedom. The AR probabilities for the incident electron from the two valleys exhibit certain symmetry with respect to the magnetization angle and the effective energy of light. The equal-spin AR and normal AR present different features and resonant behaviors near the superconducting gap edges. Due to equal-spin-triplet Cooper pairs, not only charge supercurrent but also spin supercurrent can transport in the Ising superconductors. The differential spin conductance for electron injecting from the two valleys can be controlled by the circularly polarized light.
|
Received: 13 June 2023
Revised: 07 August 2023
Accepted manuscript online: 10 August 2023
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974153, 12374034 and 11921005), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302403), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000). |
Corresponding Authors:
Wei-Tao Lu, Qing-Feng Sun
E-mail: physlu@163.com;sunqf@pku.edu.cn
|
Cite this article:
Wei-Tao Lu(卢伟涛), Yue Mao(毛岳), and Qing-Feng Sun(孙庆丰) Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction 2023 Chin. Phys. B 32 107403
|
[1] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [2] Zhao S, Li X, Dong B, Wang H, Wang H, Zhang Y, Han Z and Zhang H 2021 Rep. Prog. Phys. 84 026401 [3] Sun J T and Meng S 2015 Acta Phys. Sin. 64 187301 (in Chinese) [4] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172 [5] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448 [6] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [7] Zhuang Y C and Sun Q F 2022 Phys. Rev. B 106 165417 [8] Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, De Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A and Ernstorfer R 2016 Phys. Rev. Lett. 117 277201 [9] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [10] Liu Y W, Hou Z, Li S Y, Sun Q F and He L 2020 Phys. Rev. Lett. 124 166801 [11] Zubair M, Vasilopoulos P and Tahir M 2022 Phys. Rev. B 106 205402 [12] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337 [13] Akhmerov A R and Beenakker C W J 2007 Phys. Rev. Lett. 98 157003 [14] Linder J and Yokoyama T 2014 Phys. Rev. B 89 020504(R) [15] Majidi L and Asgari R 2014 Phys. Rev. B 90 165440 [16] Schroer A, Silvestrov P G and Recher P 2015 Phys. Rev. B 92 241404(R) [17] Lu W T and Sun Q F 2021 Phys. Rev. B 104 045418 [18] Qi F, Cao J and Jin G 2018 Phys. Rev. B 98 045422 [19] Qi F, Cao J, Cao J and Zhang L 2018 Chin. Phys. B 27 127401 [20] Yan Q, Zhou Y F and Sun Q F 2020 Chin. Phys. B 29 097401 [21] Taniguchi K, Matsumoto A, Shimotani H and Takagi H 2012 Appl. Phys. Lett. 101 042603 [22] Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353 [23] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 [24] Costanzo D, Zhang H, Reddy B A, Berger H and Morpurgo A F 2018 Nat. Nanotechnol. 13 483 [25] Hamill A, Heischmidt B, et al. 2021 Nat. Phys. 17 949 [26] Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93 180501 [27] Lesser O, Shavit G and Oreg Y 2020 Phys. Rev. Research 2 023254 [28] Xie Y, Zhou B T, Ng T K and Law K T 2020 Phys. Rev. Research 2 013026 [29] Möckli D and Khodas M 2020 Phys. Rev. B 101 014510 [30] Tang G, Bruder C and Belzig W 2021 Phys. Rev. Lett. 126 237001 [31] Lv P, Zhou Y F, Yang N X and Sun Q F 2018 Phys. Rev. B 97 144501 [32] Cheng Q and Sun Q F 2019 Phys. Rev. B 99 184507 [33] Tang G, Klees R L, Bruder C and Belzig W 2021 Phys. Rev. B 104 L241413 [34] Lu W T, Sun Q F and Cheng Q 2022 Phys. Rev. B 105 125425 [35] Dai Y X, Mao Y and Sun Q F 2022 Phys. Rev. B 106 184513 [36] Fausti D, Tobey R I, Dean N, Kaiser S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H and Cavalleri A 2011 Science 331 189 [37] Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A, Lupi S, Di Pietro P, Pontiroli D, Riccó M, Clark S R, Jaksch D and Cavalleri A 2016 Nature 530 461 [38] Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A and Averitt R D 2012 Nature 487 345 [39] Sentef M A, Claassen M, Kemper A F, Moritz B, Oka T, Freericks J K and Devereaux T P 2015 Nat. Commun. 6 7047 [40] Hubener H, Sentef M A, De Giovannini U, Kemper A F and Rubio A 2017 Nat. Commun. 8 13940 [41] Mclver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38 [42] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108 [43] Platero G and Aguado R 2004 Phys. Rep. 395 1 [44] Ezawa M 2013 Phys. Rev. Lett. 110 026603 [45] Tahir M, Manchon A and Schwingenschlögl U 2014 Phys. Rev. B 90 125438 [46] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515 [47] Sun Q F and Xie X C 2009 J. Phys.: Condens. Matter 21 344204 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|