Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067302    DOI: 10.1088/1674-1056/25/6/067302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states

Zhao-Tan Jiang(江兆潭), Cheng-Cheng Zhong(仲成成)
School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  

We investigate the quantum transport properties through a special kind of quantum dot (QD) system composed of a serially coupled multi-QD-pair (multi-QDP) chain and side-coupled Majorana bound states (MBSs) by using the Green functions method, where the conductance can be classified into two kinds: the electron tunneling (ET) conductance and the Andreev reflection (AR) one. First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e2/h is present (or absent) when the MBS is coupled to the far left (or the other) QDP. Moreover, the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one, and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs, indicating that the MBS will make obvious influences on the competition between the ET and AR processes. Then we find that the tunneling rate ΓL is able to affect the conductances of leads L and R in different ways, demonstrating that there exists a ΓL-related competition between the AR and ET processes. Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e2/h into two sub-peaks. As the inter-MBS coupling becomes stronger, the two sub-peaks are pushed away from each other and simultaneously become lower, which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e2/2h become higher. Also, the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger. This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs, which is helpful for understanding the nature of the MBSs, as well as the MBS-related QD transport properties.

Keywords:  electron transport      quantum dot      Andreev reflection  
Received:  06 November 2015      Revised:  27 February 2016      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.21.La (Quantum dots)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274040 and 10974015) and the Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0044).

Corresponding Authors:  Zhao-Tan Jiang     E-mail:  jiangzhaotan@hotmail.com

Cite this article: 

Zhao-Tan Jiang(江兆潭), Cheng-Cheng Zhong(仲成成) Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states 2016 Chin. Phys. B 25 067302

[1] Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
[2] Kitaev A Y 2003 Ann. Phys. (NY) 303 2
[3] Stern A 2010 Nature 464 187
[4] Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[5] Moore G and Read N 1991 Nucl. Phys. B 360 362
[6] Read N and Green D 2000 Phys. Rev. B 61 10267
[7] Alicea J 2010 Phys. Rev. B 81 125318
[8] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[9] Kopnin N B and Salomaa M M 1991 Phys. Rev. B 44 9667
[10] Tewari S, Das Sarma S, Nayak C, Zhang C and Zoller P 2007 Phys. Rev. Lett. 98 010506
[11] Deng M X, Zheng S H, Yang M, Hu L B and Wang R Q 2015 Chin. Phys. B 24 037302
[12] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[13] Y Oreg, G Refael and F von Oppen 2010 Phys. Rev. Lett. 105 177002
[14] D Sticlet, C Bena and P Simon 2012 Phys. Rev. Lett. 108 096802
[15] Sau J D, Tewari S and Das Sarma S 2012 Phys. Rev. B 85 064512
[16] Bolech C J and Demler E 2007 Phys. Rev. Lett. 98 237002
[17] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
[18] Wu B H, Cheng X, Wang C R and Gong W J 2014 Chin. Phys. Lett. 31 037306
[19] Zhou Y and Guo J H 2015 Acta Phys. Sin. 64 167302 (in Chinese)
[20] Law K T, Lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001
[21] Flensberg K 2010 Phys. Rev. B 82 180516(R)
[22] Fu L and Kane C L 2009 Phys. Rev. B 79 161408
[23] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308(R)
[24] Cao Y, Wang P, Xiong G, Gong M and Li X Q 2012 Phys. Rev. B 86 115311
[25] Lee M, Lim J S and Lopez R 2013 Phys. Rev. B 87 241402(R)
[26] Wang Z, Hu X Y, Liang Q F and Hu X 2013 Phys. Rev. B 87 214513
[27] Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802
[28] Liu J, Wang J and Zhang F C 2014 Phys. Rev. B 90 035307
[29] Li Y X and Bai Z M 2013 J. Appl. Phys. 114 033703.
[30] Wang N, Lü S H and Li Y X 2014 J. Appl. Phys. 115 083706
[31] Shang E M, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
[32] Gong W J, Zhang S F, Li Z C, Yi G and Zheng Y S 2014 Phys. Rev. B 89 245413
[33] Jiang C, Lu G and Gong W J 2014 J. Appl. Phys. 116 103704
[34] Sun Q F, Wang J and Lin T H 1999 Phys. Rev. B 59 3831
[35] Sun Q F, Guo H and Wang J 2002 Phys. Rev. B 65 075315
[36] Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B 72 045332
[37] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!