Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Moiré Dirac fermions in transition metal dichalcogenides heterobilayers |
Chenglong Che(车成龙), Yawei Lv(吕亚威)†, and Qingjun Tong(童庆军)‡ |
School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
Abstract Monolayer group-VIB transition metal dichalcogenides (TMDs) feature low-energy massive Dirac fermions, which have valley contrasting Berry curvature. This nontrivial local band topology gives rise to valley Hall transport and optical selection rules for interband transitions that open up new possibilities for valleytronics. However, the large bandgap in TMDs results in relatively small Berry curvature, leading to weak valley contrasting physics in practical experiments. Here, we show that Dirac fermions with tunable large Berry curvature can be engineered in moiré superlattice of TMD heterobilayers. These moiré Dirac fermions are created in a magnified honeycomb lattice with its sublattice degree of freedom formed by two local moiré potential minima. We show that applying an on-site potential can tune the moiré flat bands into helical ones. In short-period moiré superlattice, we find that the two moiré valleys become asymmetric, which results in a net spin Hall current. More interestingly, a circularly polarized light drives these moiré Dirac fermions into quantum anomalous Hall phase with chiral edge states. Our results open a new possibility to design the moiré-scale spin and valley physics using TMD moiré structures.
|
Received: 31 May 2023
Revised: 24 July 2023
Accepted manuscript online: 10 August 2023
|
PACS:
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
68.65.Cd
|
(Superlattices)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
Fund: Project supported by the Science Fund for Distinguished Young Scholars of Hunan Province (Grant No. 2022J10002), the National Key Research and Development Program of China (Grant No. 2021YFA1200503), and the Fundamental Research Funds for the Central Universities from China. |
Corresponding Authors:
Yawei Lv, Qingjun Tong
E-mail: lvyawei@hnu.edu.cn;tongqj@hnu.edu.cn
|
Cite this article:
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军) Moiré Dirac fermions in transition metal dichalcogenides heterobilayers 2023 Chin. Phys. B 32 107307
|
[1] Rycerz A, Tworzydlo J and Beenakker C 2007 Nat. Phys. 3 172 [2] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev. 44 2643 [3] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [4] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 1 [5] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D and Rothschild M 2018 Small 14 1801483 [6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [7] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [8] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 [9] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [10] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [11] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [12] Cao T, Wang G, Han W, et al. 2012 Nat. Commun. 3 887 [13] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [14] Yuan H, Wang X, Lian B, et al. 2014 Nat. Nanotechnol. 9 851 [15] Zhang Y, Oka T, Suzuki R, Ye J and Iwasa Y 2014 Science 344 725 [16] Geim A K and Grigorieva I V 2013 Nature 499 419 [17] Ponomarenko L, Gorbachev R, Yu G, et al. 2013 Nature 497 594 [18] Hunt B, Sanchez-Yamagishi J D, Young A F, et al. 2013 Science 340 1427 [19] Gorbachev R, Song J, Yu G, Kretinin A, et al. 2014 Science 346 448 [20] Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y and Shih C K 2017 Science Advances 3 e1601459 [21] Tong Q, Yu H, Zhu Q, Wang Y, Xu X and Yao W 2017 Nat. Phys. 13 356 [22] Tong Q, Liu F, Xiao J and Yao W 2018 Nano Lett. 18 7194 [23] Yu H, Liu G B, Tang J, Xu X and Yao W 2017 Science Advances 3 e1701696 [24] Wu F, Lovorn T and MacDonald A 2018 Phys. Rev. B 97 035306 [25] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66 [26] Tran K, Moody G, Wu F, et al. 2019 Nature 567 71 [27] Jin C, Regan E C, Yan A, et al. 2019 Nature 567 76 [28] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [29] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375 [30] Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T and Yazdani A 2021 Nature 600 240 [31] Cao Y, Rodan-Legrain D, Park J M, Yuan N F, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P 2021 Science 372 264 [32] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M and Goldhaber-Gordon D 2019 Science 365 605 [33] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A 2020 Science 367 900 [34] Liu G B, Shan W Y, Yao Y, Yao W and Xiao D 2013 Phys. Rev. B 88 085433 [35] Wu F, Lovorn T, Tutuc E and MacDonald A H 2018 Phys. Rev. Lett. 121 026402 [36] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [37] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.: Condens. Matter 29 465901 [38] Grimme S, Antony J, Ehrlich S and Krieg H 2010 The Journal of Chemical Physics 132 154104 [39] Tang Y, Li L, Li T, et al. 2020 Nature 579 353 [40] Yao W, Yang S A and Niu Q 2009 Phys. Rev. Lett. 102 096801 [41] Dong J W, Chen X D, Zhu H, Wang Y and Zhang X 2017 Nat. Mater. 16 298 [42] Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F and Liu Z 2017 Nat. Phys. 13 369 [43] Zhang D W, Zhu Y Q, Zhao Y, Yan H and Zhu S L 2018 Advances in Physics 67 253 [44] Sui M, Chen G, Ma L, et al. 2015 Nat. Phys. 11 1027 [45] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys. 11 1032 [46] Rudner M S and Lindner N H 2020 Nat. Rev. Phys. 2 229 [47] Bao C, Tang P, Sun D and Zhou S 2022 Nat. Rev. Phys. 4 33 [48] Zhan F, Ning Z, Gan L Y, Zheng B, Fan J and Wang R 2022 Phys. Rev. B 105 L081115 [49] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108 [50] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|