Abstract Monolayer group-VIB transition metal dichalcogenides (TMDs) feature low-energy massive Dirac fermions, which have valley contrasting Berry curvature. This nontrivial local band topology gives rise to valley Hall transport and optical selection rules for interband transitions that open up new possibilities for valleytronics. However, the large bandgap in TMDs results in relatively small Berry curvature, leading to weak valley contrasting physics in practical experiments. Here, we show that Dirac fermions with tunable large Berry curvature can be engineered in moiré superlattice of TMD heterobilayers. These moiré Dirac fermions are created in a magnified honeycomb lattice with its sublattice degree of freedom formed by two local moiré potential minima. We show that applying an on-site potential can tune the moiré flat bands into helical ones. In short-period moiré superlattice, we find that the two moiré valleys become asymmetric, which results in a net spin Hall current. More interestingly, a circularly polarized light drives these moiré Dirac fermions into quantum anomalous Hall phase with chiral edge states. Our results open a new possibility to design the moiré-scale spin and valley physics using TMD moiré structures.
Fund: Project supported by the Science Fund for Distinguished Young Scholars of Hunan Province (Grant No. 2022J10002), the National Key Research and Development Program of China (Grant No. 2021YFA1200503), and the Fundamental Research Funds for the Central Universities from China.
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军) Moiré Dirac fermions in transition metal dichalcogenides heterobilayers 2023 Chin. Phys. B 32 107307
[1] Rycerz A, Tworzydlo J and Beenakker C 2007 Nat. Phys.3 172 [2] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev.44 2643 [3] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys.10 343 [4] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater.1 1 [5] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D and Rothschild M 2018 Small14 1801483 [6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys.82 1959 [7] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett.99 236809 [8] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B77 235406 [9] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett.108 196802 [10] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol.7 490 [11] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol.7 494 [12] Cao T, Wang G, Han W, et al. 2012 Nat. Commun.3 887 [13] Mak K F, McGill K L, Park J and McEuen P L 2014 Science344 1489 [14] Yuan H, Wang X, Lian B, et al. 2014 Nat. Nanotechnol.9 851 [15] Zhang Y, Oka T, Suzuki R, Ye J and Iwasa Y 2014 Science344 725 [16] Geim A K and Grigorieva I V 2013 Nature499 419 [17] Ponomarenko L, Gorbachev R, Yu G, et al. 2013 Nature497 594 [18] Hunt B, Sanchez-Yamagishi J D, Young A F, et al. 2013 Science340 1427 [19] Gorbachev R, Song J, Yu G, Kretinin A, et al. 2014 Science346 448 [20] Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y and Shih C K 2017 Science Advances3 e1601459 [21] Tong Q, Yu H, Zhu Q, Wang Y, Xu X and Yao W 2017 Nat. Phys.13 356 [22] Tong Q, Liu F, Xiao J and Yao W 2018 Nano Lett.18 7194 [23] Yu H, Liu G B, Tang J, Xu X and Yao W 2017 Science Advances3 e1701696 [24] Wu F, Lovorn T and MacDonald A 2018 Phys. Rev. B97 035306 [25] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature567 66 [26] Tran K, Moody G, Wu F, et al. 2019 Nature567 71 [27] Jin C, Regan E C, Yan A, et al. 2019 Nature567 76 [28] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature556 43 [29] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L and Efetov D K 2020 Nature583 375 [30] Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T and Yazdani A 2021 Nature600 240 [31] Cao Y, Rodan-Legrain D, Park J M, Yuan N F, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P 2021 Science372 264 [32] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M and Goldhaber-Gordon D 2019 Science365 605 [33] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A 2020 Science367 900 [34] Liu G B, Shan W Y, Yao Y, Yao W and Xiao D 2013 Phys. Rev. B88 085433 [35] Wu F, Lovorn T, Tutuc E and MacDonald A H 2018 Phys. Rev. Lett.121 026402 [36] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter21 395502 [37] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.: Condens. Matter29 465901 [38] Grimme S, Antony J, Ehrlich S and Krieg H 2010 The Journal of Chemical Physics132 154104 [39] Tang Y, Li L, Li T, et al. 2020 Nature579 353 [40] Yao W, Yang S A and Niu Q 2009 Phys. Rev. Lett.102 096801 [41] Dong J W, Chen X D, Zhu H, Wang Y and Zhang X 2017 Nat. Mater.16 298 [42] Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F and Liu Z 2017 Nat. Phys.13 369 [43] Zhang D W, Zhu Y Q, Zhao Y, Yan H and Zhu S L 2018 Advances in Physics67 253 [44] Sui M, Chen G, Ma L, et al. 2015 Nat. Phys.11 1027 [45] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys.11 1032 [46] Rudner M S and Lindner N H 2020 Nat. Rev. Phys.2 229 [47] Bao C, Tang P, Sun D and Zhou S 2022 Nat. Rev. Phys.4 33 [48] Zhan F, Ning Z, Gan L Y, Zheng B, Fan J and Wang R 2022 Phys. Rev. B105 L081115 [49] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B84 235108 [50] Haldane F D M 1988 Phys. Rev. Lett.61 2015
Exciton luminescence and many-body effect of monolayer WS2 at room temperature Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.