Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077304    DOI: 10.1088/1674-1056/ab8db2
RAPID COMMUNICATION Prev   Next  

Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure

Longxiang Xu(徐龙翔)1, Wengang Lu(吕文刚)2,3, Chen Hu(胡晨)4, Qixun Guo(郭奇勋)1, Shuai Shang(尚帅)1, Xiulan Xu(徐秀兰)1, Guanghua Yu(于广华)1, Yu Yan(岩雨)5, Lihua Wang(王立华)6, Jiao Teng(滕蛟)1
1 Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing, 100083, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China;
4 Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada;
5 Corrosion and Protection Center, Key Laboratory for Environmental Fracture(MOE), University of Science and Technology Beijing, Beijing 100083, China;
6 Institute of Microstructure and Property of Advanced Materials, Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
Abstract  The valley splitting has been realized in the graphene/Ni heterostructure with the splitting value of 14 meV, and the obtained valley injecting efficiency from the heterostructure into graphene was 6.18% [Phys. Rev. B 92 115404 (2015)]. In this paper, we report a way to improve the valley splitting and the valley injecting efficiency of the graphene/Ni heterostructure. By intercalating an Au monolayer between the graphene and the Ni, the split can be increased up to 50 meV. However, the valley injecting efficiency is not improved because the splitted valley area of graphene moves away from the Fermi level. Then, we mend the deviation by covering a monolayer of Cu on the graphene. As a result, the valley injecting efficiency of the Cu/graphene/Au/Ni heterostructure reaches 10%, which is more than 60% improvement compared to the simple graphene/Ni heterostructure. Then we theoretically design a valley-injection device based on the Cu/graphene/Au/Ni heterostructure and demonstrate that the valley injection can be easily switched solely by changing the magnetization direction of Ni, which can be used to generate and control the valley-polarized current.
Keywords:  valleytronics      two-dimensional materials      valley-polarized transport  
Received:  11 April 2020      Revised:  22 April 2020      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.80.Vp (Electronic transport in graphene)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206104), the National Natural Science Foundation of China (Grant No. 51871018), Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing Natural Science Foundation, China (Grant No. Z180014), and Beijing Outstanding Young Scientists Projects, China (Grant No. BJJWZYJH01201910005018). We gratefully acknowledge the Chinese Academy of Sciences for providing computation facilities.
Corresponding Authors:  Wengang Lu, Jiao Teng     E-mail:  wglu@iphy.ac.cn;tengjiao@mater.ustb.edu.cn

Cite this article: 

Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟) Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure 2020 Chin. Phys. B 29 077304

[1] Hu C, Lu W, Ji W, Yu G, Yan Y and Teng J 2015 Phys. Rev. B 92 115404
[2] Geim K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Rycerz, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[4] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[5] Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601
[6] Hu C, Lu W, Ji W, Yu G, Yan Y and Teng J 2015 Phys. Rev. B 92 115404
[7] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[8] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys. 11 1032
[9] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148
[10] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoğlu A 2015 Nat. Phys. 11 141
[11] Cai T, Yang S A, Li X, Zhang F, Shi J, Yao W and Niu Q 2013 Phys. Rev. B. 88 115140
[12] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
[13] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[14] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[15] Suzuki R, Sakano M, Zhang Y J, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K, Miyamoto K, Okuda T, Ishizaka K, Arita R and Iwasa Y 2014 Nat. Nanotechnol. 9 611
[16] Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D and Xu X 2013 Nat. Phys. 9 149
[17] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Nanotechnol. 8 634
[18] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[19] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[20] Kang M H, Jung S C and Park J W 2010 Phys. Rev. B. 82 085409
[21] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[22] Maassen J, Ji W and Guo H 2010 Appl. Phys. Lett. 97 142105
[23] Perdew J P and Zunger A 1981 Phys. Rev. B. 23 5048
[24] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
[25] Varykhalov A, Scholz M R, Kim T K and Rader O 2010 Phys. Rev. B. 82 121101
[26] Marchenko D, Varykhalov A, Scholz M R, Bihlmayer G, Rashba E I, Rybkin A, Shikin A M and Rader O 2012 Nat. Commun. 3 1232
[27] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, J van den Brink and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[28] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, J van den Brink and Kelly P J 2009 Phys. Rev. B. 79 195425
[29] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D and Geim A K 2006 Phys. Rev. Lett. 97 016801
[30] Gorbachev R V, Tikhonenko F V, Mayorov A S, Horsell D W and Savchenko A K 2007 Phys. Rev. Lett. 98 176805
[31] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[3] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[4] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[5] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[6] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[7] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[8] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[9] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[10] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[11] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[12] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[13] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[14] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[15] Efficient doping modulation of monolayer WS2 for optoelectronic applications
Xinli Ma(马新莉), Rongjie Zhang(张荣杰), Chunhua An(安春华), Sen Wu(吴森), Xiaodong Hu(胡晓东), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(3): 037803.
No Suggested Reading articles found!